feature article
Subscribe Now

Would You Watch Robo-Sports?

When Engineering and Entertainment Intersect

“The only real sports are bullfighting, mountain climbing, and auto racing. All the others are merely games.” – Ernest Hemingway

So who d’ya like for the playoffs this year? Are you rooting for the Google Goliaths or the Microsoft Maulers? Me, I’m betting on the Intel Invaders over the Texas Instruments Titans. I heard the spread is 128 bits.

As embedded systems get smarter and more connected, the “Internet of Things” could easily become more than a marketing buzz phrase. We already have self-driving cars, auto-piloted drones, and robotic vacuum cleaners. How long before we pit them against one another?

It’s said that first automobile race was held shortly after they invented the second car. Why not have robots compete against each other? And not the human-operated “robots,” exoskeletons, or radio-controlled mobile explosives that we occasionally see on TV today. I mean real, autonomous robots that manage their own strategy and tactics.

Personally, I think that would be pretty cool. I’d set my TiVo to record that.

They don’t have to be destructive, either. We could have autonomous stick-and-ball sports, not just metallic gladiators. “Auto” racing (har, har) might be cool: Set a dozen autonomous vehicles on a track and watch ’em take off. I’m sure we’d invent entirely new sports before long, as we think up challenges for our robotic sports stars. High jump over an electric wire? Accuracy steeplechase? Laser archery?

Or how about mechanical hide and seek, with four-ton machines ducking behind rocks and climbing trees? Better yet, have a team of smaller automatons compete against one large opponent for bragging rights. Can a swarm of smaller devices, armed with GPS, laser range finders, and a cooperative, distributed mesh network zero in on a larger and more integrated opponent? Or will the behemoth crush the weaklings – perhaps literally?

I’d totally watch that.

Robotic sports might give students an interesting incentive to enter the fields of engineering, programming, physics, or mathematics. Instead of learning to create smartphone apps or programming database algorithms, CSEE candidates could be building up their alma mater’s sports team. Engineers would replace athletes as the public stars of the school. And, unlike most football players, they’d actually graduate with a useful skill.

But would it play in Peoria? Sure, engineering students might follow r-sports closely, but would your average Joe Sixpack care? I think so. The late ABS Sports producer, Roone Arledge, said the key to getting audiences engaged in sports is to always have a local angle. That’s why players’ home towns and college affiliation are almost always displayed; it allows faraway audiences to relate to an otherwise anonymous and ever-changing team lineup. Without that, nobody in Montana would watch a game between two Eastern teams. Similarly, robotic teams can be college-affiliated (at the amateur level) or sponsored by well-known brands (at the pro level), which isn’t too different from how professional sports work today.

We’d take the Apple-versus-Windows battle to a whole new level. Plus, we’d have real Androids.

What purpose would r-sports serve? What purpose does any sport serve? We don’t play (or more likely, watch) football in order to find the world’s best passer, receiver, or field-goal kicker. We don’t apply baseball as a filter to locate the world’s best ball-throwing talent or base-running champion. This isn’t Sparta. We’re not training athletes in order to toughen up soldiers.

All sports are fundamentally pointless exercises designed solely for entertainment. We invent a set of arbitrary rules, we generate meaningless tribal conflict – Beat LA! – and we root for obscenely overpaid players we’ve never met and a team whose only real association with us is based solely on its proximity to our current residence or its association with some previously attended institute of higher learning. Or because we like the mascot. Go Beavers!

So instead of tuning in to cheer for the latest Cuban-born-pitcher-turned-Seattle-hometown-hero-du-jour, we’d applaud for C-3PO. Is that so wrong?

The spinoff technology could be great. With a whole new market for engineering talent and innovation, combined with an intensely competitive atmosphere and the time and money constraints of operating a team, we’d hatch a whole generation of practical (mostly) technology. Vision systems, high-speed wireless networks, cryptography, anti-hacking technology (would hacking be allowed by the rules?), motion control, stealth technology, auto-guidance, collision-detection and -avoidance (or -assistance?), as well as plenty of other areas would all benefit. It’d be like the DARPA Grand Challenge, but less militaristic and more profitable.

Let’s turn embedded engineering into a spectator sport. But more importantly, let’s make it into a participatory sport, too. Put me in, coach. I’m ready to play.

Leave a Reply

featured blogs
Oct 23, 2020
The Covid-19 pandemic continues to impact our lives in both expected and unexpected ways. Unfortunately, one of the expected ways is a drop in charitable donations. Analysts predict anywhere from a 6% decrease '€“ with many planning for a bigger decline than that. Also, mor...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured Paper

New package technology improves EMI and thermal performance with smaller solution size

Sponsored by Texas Instruments

Power supply designers have a new tool in their effort to achieve balance between efficiency, size, and thermal performance with DC/DC power modules. The Enhanced HotRod™ QFN package technology from Texas Instruments enables engineers to address design challenges with an easy-to-use footprint that resembles a standard QFN. This new package type combines the advantages of flip-chip-on-lead with the improved thermal performance presented by a large thermal die attach pad (DAP).

Click here to download the whitepaper

Featured Chalk Talk

Innovative Hybrid Crowbar Protection for AC Power Lines

Sponsored by Mouser Electronics and Littelfuse

Providing robust AC line protection is a tough engineering challenge. Lightning and other unexpected events can wreak havoc with even the best-engineered power supplies. In this episode of Chalk Talk, Amelia Dalton chats with Pete Pytlik of Littelfuse about innovative SIDACtor semiconductor hybrid crowbar protection for AC power lines, that combine the best of TVS and MOV technologies to deliver superior low clamping voltage for power lines.

More information about Littelfuse SIDACtor + MOV AC Line Protection