feature article
Subscribe Now

Rockin’ It Industrial Style

Fans of Heavy Metal Will Like TI’s New Delfino MCU

Are you into heavy metal? Do power generation, motor control, PLCs, robotics, and automation rock your socks off? Does spinning metallica make you want to raise your fist and yell? Then grab your lighters, motörheads. Stuff’s about to get real.

The number of this beast is F2837xD (it probably means something if you say it backwards), and it comes out of Texas. Dallas, to be exact, and more specifically, TI. Within the walls of TI’s black metal warehouse it’s called Delfino because, well, F2837xD is too hard to pronounce when you’re sober.

TI’s new Hydra-headed shard of silicon has two separate C28x DSP cores, for twice the DSP madness. The C28x is a riff on the ever-popular C2000 family, as any true fan of DSPs knows. (There are no ARM processors in Delfino, so no British steel here.)

Chained and bound to each C28x DSP is a real-time control accelerator called a CLA. Since the two CLAs are themselves programmable, that means Delfino is an insane four-headed beast, summoned up to slay the grimmest control, conditioning, and signal-processing demons.

The dual C28x cores are themselves mighty warriors, a testament to TI’s years of DSP expertise. Each core pounds out 12 billion beats per minute (200 MHz) while rocking a floating-point unit, a Viterbi accelerator, and an all-new trigonometric math unit.

The Viterbi Complex unit (VCU) is the second-generation spawn of a previous VCU design seen in earlier TI releases. If you ride the lightning working with AC/DC, it’s useful for narrow-band PLC and “smart grid” work, including IEEE P1901.2, PRIME, and G3. If you’re more into speed metal, the VCU also accelerates FFT/IFFT, good for vibrational analysis on motors that have an appetite for self-destruction. FFT/IFFT calculations go about six, six, six times faster than a C28x without the VCU, and the G3-FCC goes up to 10× faster. Which is almost as good as eleven.

Alongside the FPU and VCU is an all-new Trigonometric Math Unit (TMU). Why have a trigonometry slayer in an industrial-control unit? Because it’s good for motor control, kinematics, and robotics. For many deployers, the TMU can take the place of an FPGA in the torque loop, banishing the latter device to the abyss.

The real power chord of the F2837xD is the CLA – the control-law accelerator. The chip has two, and they’re powerful engines independent of the C28x DSP cores. Like the VCU, the CLA has appeared before, though never in so fell and mighty a manifestation. It serves as obedient coprocessor minion to the C28x, overseeing short, time-critical pieces of code needing swift and abrupt execution. Motor-control feedback or feed-forward loops are prime examples of such dirty deeds done dirt cheap. Offloading these noisome tasks to the CLA avoids corrupting the sanctity of the C28x, preserving its power for greater deeds.

The CLA speaks not in tongues, but understands C. Recognizing, however, that CLA programming will be unfamiliar to uninitiated powerslaves, TI offers up its no-sacrifice ControlSuite software to adrenalize code development. With it come helpful examples, drivers, and algorithms artfully crafted to keep developers from plunging headlong into the Stygian depths of a perilously unknown architecture.

Any DSP or motor-control device without its own analog/digital conversion would likely go down in flames, so Delfino defends the faith with quad 16-bit ADCs. Four independent ADCs means simultaneous sampling of four sources, ideal for three power phases and an output. TI has cast out its previous 12-bit ADCs, embracing the higher resolution with an iron fist. Hardcore power enthusiasts managing a wall of amps will appreciate the windowed comparators and the direct interface to isolated delta-sigma modulators.

Buy your merch at the door; prices start at under $20 for the F2837xD in modest quantities. Development hardware like the docking station and the ControlCard are a few hundred bucks apiece. At those prices, the hammer of Delfino may mean megadeth to corroded old multichip power- and motor-control acts. 

9 thoughts on “Rockin’ It Industrial Style”

  1. Pingback: GVK BIO
  2. Pingback: GVK Biosciences
  3. Pingback: DMPK
  4. Pingback: ADME Assays
  5. Pingback: Boliden
  6. Pingback: colarts Diyala
  7. Pingback: Scr888 Register

Leave a Reply

featured blogs
Nov 24, 2020
In our last Knowledge Booster Blog , we introduced you to some tips and tricks for the optimal use of the Virtuoso ADE Product Suite . W e are now happy to present you with some further news from our... [[ Click on the title to access the full blog on the Cadence Community s...
Nov 23, 2020
It'€™s been a long time since I performed Karnaugh map minimizations by hand. As a result, on my first pass, I missed a couple of obvious optimizations....
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...
Nov 20, 2020
[From the last episode: We looked at neuromorphic machine learning, which is intended to act more like the brain does.] Our last topic to cover on learning (ML) is about training. We talked about supervised learning, which means we'€™re training a model based on a bunch of ...

featured video

Available DesignWare MIPI D-PHY IP for 22-nm Process

Sponsored by Synopsys

This video describes the advantages of Synopsys' MIPI D-PHY IP for 22-nm process, available in RX, TX, bidirectional mode, 2 and 4 lanes, operating at 10 Gbps. The IP is ideal for IoT, automotive, and AI Edge applications.

Click here for more information about DesignWare MIPI IP Solutions

featured paper

Exploring advancements in industrial and automotive markets with 60-GHz radar

Sponsored by Texas Instruments

The industrial and automotive markets have a tremendous need for innovative sensing technologies to help buildings, cities and automobiles sense the world around them and make more intelligent decisions.

Click here to read the article

Featured Chalk Talk

Evaluation and Development Kits

Sponsored by Samtec

With signal integrity becoming increasingly challenging in today’s designs, interconnect is taking on a key role. In order to see how a particular interconnect solution will perform in our design, we really need hands-on evaluation of the technology. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about evaluation and development kits for high-speed interconnect solutions.

More information about Samtec Evaluation and Development Kits