feature article
Subscribe Now

Imagination Deploys a MIPS Warrior

New P5600 “Warrior” CPU to do Battle with Cortex-A15

In the never-ending battle of good versus evil, Coke versus Pepsi, NASCAR versus opera, and ARM versus MIPS, the MIPS brigade has fielded a new combatant. Behold, the P5600, the point of the spear in MIPS’s epic battle to dethrone the incumbent Cortex as king of the microprocessor-IP hill.

But first, there’s the name.

Remember the MIPS “Aptiv” line of processors? Forget about it. Now that MIPS is part of Imagination Technologies, their British marketing overseers have overhauled the branding. Henceforth, MIPS processor designs will be known as the M-class, I-class, or P-class. Get it? M.I.P? All they need now is an S-class (like Mercedes-Benz) and the clever punning will be complete.

At least the sequence stays intact. The new P-class corresponds to the previous ProAptiv line of high-end cores; the midrange I-class matches up with the InterAptiv name, and the entry-level M-class corresponds to the old MicroAptive moniker. In short, Imagination is preserving the same old M-I-P progression but just ditching the –Aptiv suffix. I wonder how much that bit of market research cost.

Okay, back to work. The P5600 is MIPS’s top-of-the-line processor, which means the engineers have been at least as busy as the marketing department. As the company’s new flagship CPU, the P5600 competes directly with ARM’s Cortex-A15. Not the Cortex-A53 or –A57, you may wonder? No, because both the P5600 and the A15 are 32-bit cores, not 64-bit designs. So the P5600 sits at the top end of the lower range, if that makes any sense.

Not everybody needs a 64-bit CPU. For that matter, very few SoC designers do need a 64-bit CPU. Thirty-two bits ought to be enough for anyone, at least for a few more years, so the P5600 likely represents the fattest part of the revenue bell curve for Imagination’s processor product line. Neither too expensive nor too wimpy.

On technical merit, the P5600 gets the full five-star rating. It’s an impressive machine, with superscalar out-of-order execution, multiple dispatch, 128-bit data paths, specialized execution units, and a 16-stage pipeline that’s longer than a Russian historical novel. It gets the full SIMD treatment and handles both single- and double-precision floating-point numbers with ease. The only things it doesn’t have are support for threading and a 64-bit architecture. Both will likely show up later on the P5600’s successor.

Imagination puts a lot of emphasis on the P5600’s load/store bonding feature. This is an implementation-level technique that sniffs out consecutive load or store operations to contiguous addresses and combines them into a single bus transaction. This saves a bit of time on the bus, as you might expect, but it also makes the CPU’s caches and TLBs a bit more efficient. It’s the little things that add up.

Since MIPS and its archrival ARM are both nominally RISC architectures, there’s not a lot to separate them in terms of instruction set or mnemonic repertoire. Most programmers don’t care, anyway. Frankly, if it’s not supported by the C compiler, it might as well not be in the chip. Imagination feels that its instruction set has the edge here, hewing more closely to the RISC credo of implementing only instructions that the C compiler will use. The inference is that ARM includes too many “compiler invisible” instructions, implying a kind of impious impurity, a dangerous deviance from RISC ideology. But, as the lingering example of the x86 shows, you can never have too many instructions. Unless a new instruction slows down the entire pipeline, there’s no harm in implementing it. What’s a few million extra transistors? Maybe some enterprising assembly-language programmer will use the new opcodes, or some compiler writer will see fit to implement them. Simplicity, per se, is of no value to a programmer.

But it does have hardware benefits. The nip-and-tuck job makes P5600 smaller than its counterpart from Cambridge. About 40% smaller than a Cortex-A15, according to Imagination. That’s quite a trim for a CPU with about the same performance. Put a handful of P5600 CPUs into a four-core cluster (as designers likely will do) and you get something that’s about 30% smaller than ARM’s four-way A15 cluster. (Caches, buses, and other non-CPU logic are about the same size for both architectures, which explains the difference in relative area.)

For all its space efficiency, the P5600 handily outperforms its immediate predecessor. At the same frequency, a simulated P5600 is at least 20% faster than ProAptive, and in some cases twice as fast. In real silicon, the P5600 should consume about the same amount of power as ProAptiv, even in the same process technology. In 28nm silicon, the P5600 should easily hit 2 GHz.

All in all, the P5600 is a terrific piece of microprocessor engineering. It delivers more with less, all while maintaining binary compatibility with the dozens of MIPS-based CPU cores that came before it. It’s a necessary range-topper to help MIPS beat back the rising tide of ARM homogeneity. Look upon its work, ye mighty, and rejoice. 

Leave a Reply

featured blogs
Apr 11, 2021
https://youtu.be/D29rGqkkf80 Made in "Hawaii" (camera Ziyue Zhang) Monday: Dynamic Duo 2: The Sequel Tuesday: Gall's Law and Big Ball of Mud Wednesday: Benedict Evans on Tech in 2021... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

Intel NUC Elements

Sponsored by Mouser Electronics and Intel

Intel Next Unit of Computing (NUC) compute elements are small-form-factor barebone computer kits and components that are perfect for a wide variety of system designs. In this episode of Chalk Talk, Amelia Dalton chats with Kristin Brown of Intel System Product Group about pre-engineered solutions from Intel that can provide the appropriate level of computing power for your next design, with a minimal amount of development effort from your engineering team.

Click here for more information about Intel NUC 8 Compute Element (U-Series)