feature article
Subscribe Now

Temporary Storage

Blue Spark Makes a Flexible, Disposable Battery

They just kept going and going.

Or at least that’s what we’re led to believe. And how would we know if it could still keep going? Press that little strip on the side of the battery and see what color it turns.

The technology that went into that test strip, not the battery itself, came into its own as Energizer spun it out into a new company, Blue Spark. Blue Spark doesn’t make battery test strips, however. That technology has morphed into a new flexible battery technology that’s now being marketed into low-cost disposable items that either haven’t existed before or haven’t had any electrical capabilities until now.

Batteries may seem rather pedestrian, and, in the AAA-D series, it’s hard to imagine something coming along that would, well, fire our imaginations. But new battery chemistries and construction techniques are being actively sought to power more everyday items in less obtrusive ways. And one of the more recent innovations is the flexible battery.

We saw one such cell in our look at IPS, but that was a secondary, or rechargeable, battery. Secondary batteries are kind of a good news/bad news thing. The good news is that you can recharge them. The bad news is that you have to recharge them. That charging bit is an entire subsystem itself.

A primary battery, by contrast, is a bad news/good news thing. The bad news is that it lasts only until it’s discharged. The good news is that they hold more charge and you don’t have to mess with the recharging circuits.

Blue Spark’s battery is designed to be printed on a flexible substrate. It consists of a zinc anode and a MnO2 cathode, both with carbon contacts. These are formulated as inks and are applied using high-volume roll-to-roll screen printing. This keeps costs in the 25-50? range. The battery is completed by laying down a piece of paper that straddles the anode and cathode and squirting a few drops of the ZnCl electrolyte, which is absorbed into the paper and facilitates charge flow.

Because these materials are not considered hazardous, these batteries can, unlike your standard kitchen battery, be disposed of in the trash. That and their cost therefore make them attractive for use in low-cost disposable items. And when the topic of cheap, disposable electronics comes up, the discussion can be dominated by four letters: R-F-I-D.

Of course, RFID tags ordinarily have no battery or power source of their own: they’re powered by the RF energy from the reader. The question then becomes, what could you do if you added a battery? According to Blue Spark, you can increase the range, for one thing.

An RFID reader has to get in the range of 30-40 feet of a standard passive RFID tag in order for it to wake up and start its chatter. A battery allows the RFID tag to stay in a low-power listening mode. Because it doesn’t need to go through the effort of waking up, it can respond to a reader that’s much further away – as far as 150 feet. In one example, they were able to read a tag a million times a year for two years before the battery gave out. (Although if the tag had been in front of the reader the entire time so that it couldn’t sleep, it would have probably lasted only a month or two.)

Given the common use of RFID tags for tracking stock, two years is likely far longer than an enterprising merchant would want to have something on the shelf or in transit.

But this isn’t all they have in mind for the lowly RFID tag. Various sensing and data-gathering nodes have to communicate their accumulated information to some central point in order for it to be of use. Typically we talk about networked nodes or wireless nodes. Even without a network, you would need to go to the equipment and plug in a cable of some sort to download the data.

A battery-powered RFID tag could be designed to gather and offload the data into an RFID reader – even performing calculations. Of course, part of what motivates the use of wireless networks is the vision of remote, hard-to-reach equipment, where it’s difficult and expensive to send someone out to replace a battery or download data. That in mind, the kind of datalogger that would benefit from  an RFID approach would be one where the node is easily and inexpensively accessed, and either it has a finite lifetime throughout which the battery can last or the battery can be replaced as needed (presumably while gathering data).

Moving beyond RFID, they see medical applications as well. We’ve all heard about (or used) transdermal patches, which deliver medicines through our skin. They work through ordinary diffusion or by the melting of material by body heat. Using an electric field driving ions that transport the medication can increase the delivery by sixteen times. Strapping a AAA battery to a patch simply doesn’t pass the fashion test; a flexible battery, however is another thing – especially when it can be safely disposed along with the patch itself.

Continuing into the realm of the indulgent, they see uses in interactive product packaging – imagine a shelf in a store with 20 boxes all flashing and whooping, saying “Buy me!!” “No, buy ME!!” Just what our shopping experience is missing. On the less obnoxious side, of course, is the possibility of packaging that shows how to use the product or provides information in a way that’s more effective than simply printing it on the package itself.

And then there are those annoying cute singing holiday and birthday cards. Just imagine what can be done with a slimmer, more flexible battery. <shudder>

The common denominator in all of these products is, of course, that they have limited lifetimes and will be trashed right after a single use (the datalogger being less obvious on that score). A secondary battery would clearly be inappropriate for this, given the lower energy density and the cost of a recharging circuit that would never be used. (No, I don’t think you could talk people into removing the battery from a used skin patch to recharge and put on a different one. Thanks anyway for saving the planet.)

For any of you inspired to jump into this, Blue Spark says they have patents on both materials and processes for these batteries. Getting them to work isn’t only a matter of basic chemistry, but it is also about how to formulate the inks so that they’re reliable and long-lasting. Blue Spark is presumably protecting this technology as a means to keep going and going…

One thought on “Temporary Storage”

Leave a Reply

featured blogs
Oct 26, 2020
Last week was the Linley Group's Fall Processor Conference. The conference opened, as usual, with Linley Gwenap's overview of the processor market (both silicon and IP). His opening keynote... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through-hole products, or a single or double row surface mount with a larger centerline rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and con...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

Autonomous vehicles, robotics, augmented and virtual reality all require simultaneous localization and mapping (SLAM) to build a map of the surroundings. Combining SLAM with a neural network engine adds intelligence, allowing the system to identify objects and make decisions. In this demo, Synopsys ARC EV processor’s vision engine (VPU) accelerates KudanSLAM algorithms by up to 40% while running object detection on its CNN engine.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

Fundamentals of Precision ADC Noise Analysis

Sponsored by Texas Instruments

Build your knowledge of noise performance with high-resolution delta-sigma ADCs. This e-book covers types of ADC noise, how other components contribute noise to the system, and how these noise sources interact with each other.

Click here to download the whitepaper

Featured Chalk Talk

Cloud Computing for Electronic Design (Are We There Yet?)

Sponsored by Cadence Design Systems

When your project is at crunch time, a shortage of server capacity can bring your schedule to a crawl. But, the rest of the year, having a bunch of extra servers sitting around idle can be extremely expensive. Cloud-based EDA lets you have exactly the compute resources you need, when you need them. In this episode of Chalk Talk, Amelia Dalton chats with Craig Johnson of Cadence Design Systems about Cadence’s cloud-based EDA solutions.

More information about the Cadence Cloud Portfolio