feature article
Subscribe Now

Broadcasting Programmability

FPGA Solutions Hit a Sweet Spot

The world of broadcast has always been a technology challenge. Consumers demand a lot from their TV programming, and they have geared up to prove it. There has been a revolution in recent years in the quality and performance of consumer video equipment, and that boom has made the consumers’ expectations skyrocket. We want broadcasters to deliver stunning quality images right to our monitors – with no glitches, delays, or quality problems. And, we want to choose from literally thousands of programming options at any given time. 

More recently, we have even begun to expect to be able to access that same content wirelessly with our smartphones, tablets, and other mobile devices. Our sense of technological entitlement blooms instantly – usually before our expectations have even become fully feasible. If we can’t stream HD video to our iPad while we’re camped in Yosemite, we’re livid. Our technology providers have failed us. Civilization is on the brink of ruin.

Pushing that crunch back up the food chain to the broadcasters creates a huge problem. If consumers want to watch 1080p, chances are that broadcasters need to be capturing 4K/2K. However demanding the data pipe is on the last mile, the first mile is almost incomprehensibly terrifying. Capturing, compressing, editing, distributing, and storing the massive amount of programming that today’s world demands is a monumental technical task.

Unfortunately, the production volumes in the broadcast world do not come close to justifying the kind of economy of scale that facilitates devices like smartphones or the worldwide wireless infrastructure. When most equipment is produced in the tens to low thousands of copies, creating a high-performance custom SoC is pretty much out of the question in today’s world. With an estimated price tag of $100M to complete a 20-something nm IC design, the cost of broadcast equipment would go through the roof if even one custom chip were required.

However, the performance demands of broadcast are so extreme that the problems are almost impossible to solve with off-the-shelf components. This is why broadcast is a sweet spot for programmable devices like FPGAs. There is a well-funded demand for ultra-high performance at very small production volumes. 

At the recent IBC, those demands met solutions. Both Xilinx and Altera were rolling out the red carpet to the broadcast world – touting technologies that are uniquely positioned to solve the core problems of modern broadcasting. FPGA-based solutions tend to fall into broad categories of video capture and processing, video connectivity, and video/media transport. Combined with traditional processors, the compute acceleration, switching, and connectivity power of FPGAs makes demanding applications like 4K/2K (and now even 8K) video capture and processing possible, without breaking the bank on either development/NRE cost or power consumption.

Of course, having a big slab of silicon thrown on your bench doesn’t give you a broadcast solution, even if that slab of silicon is a highly-capable FPGA. The engineering distance from a bare FPGA to a working video solution is huge, and the amount of effort and expertise required are substantial. Furthermore, most of that engineering work ends up being on the basics – simply getting a video stream into and out of the device and doing some kind of processing on it in between.

In their chase for the broadcast market, FPGA companies and their partners have invested a substantial amount of effort in creating tools, IP, and reference designs aimed at getting broadcast equipment designers from the “what the heck is this FPGA thing I just bought” stage to the “hey, look, I’ve got a working video stream coming out of this thing” stage – in just about zero time.

At IBC, Xilinx was showcasing collaborative solutions with multiple partners – focused mainly in the early stages of the broadcast chain – right after the content is captured. Xilinx calls this phase “contribution” and it covers everything from compression and cross-conversion to processing and editing. With their partner OmniTek, they were debuting a broadcast application development kit – using their new Zynq SoC devices that combine high-performance ARM-based processing subsystems with FPGA fabric and high-speed transceivers. The OmniTek Zynq-7000 SoC broadcast development kit features a nice development board with all the connectivity you’d expect and need for creating video processing designs. Moving that from the realm of “expected” to “really useful” is the large accompaniment of domain-specific IP and reference designs.

The star of this show is the 2.0 version of the real-time video engine (RTVE). This is a very sophisticated reference design – developed jointly by Xilinx and OmniTek. Its aim is to get you up and running almost instantly – with a video application that is probably 80-90% of whatever you’re planning to develop. As we’re on version 2.0, the design has been enhanced considerably based on previous user feedback and experience. It supports up to eight simultaneous channels of video, features an integrated de-interlacer/scaler with multi-port video direct memory access for increased performance, and VCXO removal, which shrinks and integrates the design even more. Besides giving you the benefit of an up-and-running-fast reference design, it brings design techniques to the party that will improve the power efficiency and BOM cost of your finished product. 

The RTVE is versatile enough to be used in a wide range of applications, from cameras and camcorders to switchers to monitors and multi-viewers. The application on top of the Zynq device allows the subject application to be nicely partitioned between software (for maximum flexibility) and hardware (in FPGA fabric for maximum performance and power efficiency). Besides giving one more level of integration, devices like Zynq enable providers like OmniTek to create solutions with a known, fixed hardware AND software environment. This paves the way to a new level of integrated-comprehensive IP that would not be possible with ad-hoc, discrete programmable logic and processing subsystems.

In the arena of getting video from point A to point B, Xilinx also announced a collaborative solution with partner Barco Silex aimed at easing video-over-IP development. Even though just about everything is inevitably headed toward IP-based infrastructures, video is one of the most challenging arenas because of the enormous bandwidth and quality-of-service requirements. Most of the systems designed to handle piping data through our IP networks break badly when they encounter high-quality video streams. The performance and power-efficiency of FPGAs is just about a requirement to facilitate successful broadcast-quality video over these types of networks. In this area, standards are rapidly evolving, and they are likely to remain in a state of flux for a number of years. The two companies are partnering to deliver the hardware and IP that will handle the current stable of standards and protocols, and that will facilitate easy and rapid migration as those standards evolve and as new standards emerge.

Not to be outdone, Altera was on-hand with a full-size PCIe card outfitted with two high-performance Stratix V FPGAs. This video computing platform brings boatloads of bandwidth to the party – and massive memory connectivity. The system includes a wide range of interfaces – SDI, DisplayPort, HDMI, 1-10GbE, PCIe (of course), and SFP+.

With the rapid pace of evolution in the video world, we expect to see explosive development in this area in the months and years to come. Consumer expectations are at an all time high, and companies throughout the broadcast and delivery chain face unprecedented challenges and opportunities in servicing this voracious consumer appetite. Let’s grab some popcorn and watch the fun!

Leave a Reply

featured blogs
Nov 25, 2020
It constantly amazes me how there are always multiple ways of doing things. The problem is that sometimes it'€™s hard to decide which option is best....
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...
Nov 25, 2020
It might seem simple, but database units and accuracy directly relate to the artwork generated, and it is possible to misunderstand the artwork format as it relates to the board setup. Thirty years... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...

featured video

Available DesignWare MIPI D-PHY IP for 22-nm Process

Sponsored by Synopsys

This video describes the advantages of Synopsys' MIPI D-PHY IP for 22-nm process, available in RX, TX, bidirectional mode, 2 and 4 lanes, operating at 10 Gbps. The IP is ideal for IoT, automotive, and AI Edge applications.

Click here for more information about DesignWare MIPI IP Solutions

featured paper

Reducing Radiated EMI

Sponsored by Maxim Integrated

This application note explains how to reduce the radiated EMI emission in the MAX38643 nanopower buck converter. It also explains the sources of EMI noise, and provides a few simple methods to reduce the radiated EMI and make the MAX38643 buck converter compliant to the CISPR32 standard Class B limit.

Click here to download the whitepaper

Featured Chalk Talk

Cadence Celsius Thermal Solver

Sponsored by Cadence Design Systems

Electrical-thermal co-simulation can dramatically improve the system design process, allowing thermal design adaptation to be done much earlier. The Cadence Celsius Thermal Solver is a complete electrical-thermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. In this episode of Chalk Talk, Amelia Dalton chats with CT Kao of Cadence Design Systems about how the Celsius Thermal Solver can help detect and mitigate thermal issues early in the design process.

More information about Celsius Thermal Solver