feature article
Subscribe Now

What Is 5 Times x86?

AMD Launches Embedded x86 Processors… Again

If the Earth is about to be hit by a meteor and you’ve got only 10 seconds to read this article, here’s the takeaway: some AMD processors now have 5-year lifespans.

Still with us? Splendid. That’s good news for embedded designers (the five-year thing, I mean), because AMD processors usually have the shelf life of a Harlequin romance novel. They follow the boom-and-bust cycles of PC fashion, dying off and getting replaced by faster or more elaborate versions every few months. That’s fine for the PC market, but it drives embedded designers nuts because they can’t get last year’s chip any more. By the time you design your board, the chip is obsolete, superseded by another model with a different pinout and different electrical characteristics.

That frustrating treadmill has led most embedded developers to eschew PC processors from AMD and Intel in favor of more traditional embedded processors from… well, everyone else, really. With no PC market cycles to chase, all the other processor vendors are happy to accommodate the relatively long product cycles of us, the embedded elite.

Even AMD and Intel occasionally get the memo. “Hey, guys, we like your chips but that gnat-like lifespan is killing us!” The two x86 behemoths have both come out with “embedded” versions of their PC processors at various times over the past few decades. But their resolve seems to wither after the first few years. Now you see ’em, now you don’t. It doesn’t help to have long-life chips if the strategy itself has a short lifespan.

Anyway, AMD is now back in the embedded-x86 business. The company rolled out its G-series processors last year, and, this month, it’s updating that roster with the new R-series. The R-series is more, better, faster than the G-series but follows a similar philosophy. Namely: make PC processors, but make them last longer.

If you’re already a fan of AMD’s PC processors, you already know most of the technical details of the R-series. These chips are not new designs, but existing designs that have been earmarked for long lifespans. (Longer than the half-life of a PC processor, anyway.)

The R-series chips are based on the Piledriver CPU core design, the same one used in AMD’s Opteron. Piledriver is the successor to Bulldozer, and it naturally comes before Steamroller and Excavator in the family lineage. Piledriver comes in dual- and quad-core configurations, with each core capable of two-way multithreading. Each CPU core also has its own L1 cache, and each pair of cores shares an L2 cache. Clock speeds are in the very respectable 2–3 GHz range.

The CPU is only part of the story, though. R-series chips are highly integrated, most notably with a graphics accelerator onboard. Ever since AMD acquired ATI a few years ago, the company has been pushing its “Fusion” concept of unified CPU and GPU. It’s a sound engineering concept, because the connection between a CPU and a GPU needs to be both fast and quick (which isn’t the same thing), and the best way to accomplish that is to put them side by side on the same die. AMD’s desktop and notebook processors have been made this way for a while; now it’s the embedded group’s turn.

The on-chip GPU is essentially an ATI Radeon 7000, which makes it a midrange PC graphics adapter but a fairly high-end embedded GPU. AMD claims the GPU alone has 384 processing engines in it, which is accurate but also irrelevant. Graphics accelerators are massively parallel by nature, and a lot of those 384 “engines” are pretty rudimentary. Nevertheless, they do crank out some pretty pictures.

Perhaps slickest of all is the GPU’s ability to drive four monitors simultaneously. Again, this is not an unusual feature for a PC plug-in card, but it’s remarkable for a single-chip processor. The four screens can be the same (four sides of a kiosk, for example) or completely different (four “glass cockpit” displays), or four quarters of a single large image (to make your own Jumbotron). And, of course, the whole thing is supported by Windows and DirectX, so if your embedded system requires some elaborate graphics, the R-series is a good way to go.

As feature-rich as the chips are, they’re not complete PCs. If that’s what you want, you’ll still need a “south bridge” to get PCI, SATA disk I/O, Ethernet, USB, audio in and out, timers, RTC, and all the other miscellaneous peripherals that make PC programming so charming. AMD naturally offers just such a chip.

The R-series processors are available in two packages: a pin-grid array and a ball-grid array. The PGA is nice for prototyping or if you like your processor in a socket. The BGA is better for mass production or if size and space are an issue.

What’s this all going to cost you? Hard to say, but figure low three figures in modest volumes. The slowest, dual-core R-272 starts at around $125, and prices obviously go up for the faster parts but go down as your purchasing volume increases. A talk with your friendly neighborhood AMD salesperson is in order.

Are these the same chips that go into PCs? Yes. Well, sort of. The R-series parts are indeed the very same silicon die that you’ll find inside notebooks and desktop PCs, but not exactly the same product. Some PC-only features have been disabled (some PCI Express functions, for example) and others enabled (such as legacy PCI support) to reduce pin count and protect PC profit margins. AMD doesn’t want PC developers using embedded chips or vice versa. But all of that is routine. Every chip maker plays shell games with its silicon. It helps reduce manufacturing costs while inflating the apparent product catalog. Think of it as a custom-tailored, bespoke microprocessor. And if AMD green is to your liking, the R-series may suit you perfectly. 

5 thoughts on “What Is 5 Times x86?”

  1. So let me get this right – 5 year life?

    Well that rules out most automotive and milaero then.

    Fairly high price?

    Consumer apps mainly out of the window then.

    What will it be used for?

  2. Hi Dick,

    5 Years is the standard planned availability for our embedded products, we have many products that have gone longer than 5 years like the SC520 that went for nearly 10 years and the AMD Geode LX will be out for 10 years before the planned EOL at the end of 2015.

    The AMD Embedded R-Series APU targets the mid-high end embedded applications where you would also find the Intel Core solutions. For low power and cost sensitive applications the AMD Embedded G-Series APU is the recommended solution. See the blog posted at,http://blogs.amd.com/work/2012/05/21/easing-the-embedded-processor-… to see how they align.

    Thanks,
    Cameron

  3. @Teddy-

    Oh, I agree completely. AMD’s new embedded x86 chips probably aren’t as power-efficient as those designed by MIPS or ARM, but they’re not supposed to be. You buy an x86 processor because you want the software and the tool chain that comes with it, not because you’re trying to eke out the last few joules from a set of batteries.

Leave a Reply

featured blogs
Sep 28, 2022
Learn how our acquisition of FishTail Design Automation unifies end-to-end timing constraints generation and verification during the chip design process. The post Synopsys Acquires FishTail Design Automation, Unifying Constraints Handling for Enhanced Chip Design Process app...
Sep 28, 2022
You might think that hearing aids are a bit of a sleepy backwater. Indeed, the only time I can remember coming across them in my job at Cadence was at a CadenceLIVE Europe presentation that I never blogged about, or if I did, it was such a passing reference that Google cannot...
Sep 22, 2022
On Monday 26 September 2022, Earth and Jupiter will be only 365 million miles apart, which is around half of their worst-case separation....

featured video

Embracing Photonics and Fiber Optics in Aerospace and Defense Applications

Sponsored by Synopsys

We sat down with Jigesh Patel, Technical Marketing Manager of Photonic Solutions at Synopsys, to learn the challenges and benefits of using photonics in Aerospace and Defense systems.

Read the Interview online

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Twinax Flyover Systems for Next Gen Speeds

Sponsored by Samtec

As the demand for higher and higher speed connectivity increases, we need to look at our interconnect solutions to help solve the design requirements inherent with these kinds of designs. In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec discuss how Samtec’s Flyover technology is helping solve our high speed connectivity needs. They take closer look at how Samtec’s Flyover technology helps solve the issue with PCB reach, the details of FLYOVER® QSFP SYSTEM, and how this cost effective, high–performance and heat efficient can help you with the challenges of your 56 Gbps bandwidths and beyond design.

Click here for more information about Twinax Flyover® Systems for Next Gen Speeds