feature article
Subscribe Now

Let’s Get Small

Smaller Chips, Smaller RTOS, Smaller Shows

Last week saw the hale and hearty crew from Electronic Engineering Journal all in one place at Design West (née Embedded Systems Conference) in San Jose. You could have fragged the whole staff with one grenade. For security, we split up and covered various topics and vendors from disparate corners of the show floor. Some of this you’ll see on our video features, but as a public service, the less-attractive members have restricted themselves to print. 

The theme of this year’s conference was: small. Miniaturization, streamlining, shrinkification – call it what you will, we saw it in all its many forms. The chips were smaller, the software had smaller memory footprints, and the show itself was smaller. Even the cookies handed out at lunch were 0.147 ounces smaller than last year’s.

Microchip Technologies – a company whose very name means tiny – is big into small. Its popular PIC microcontrollers keep getting smaller, including devices in 4mm square flat packs that are only 1 mm thick. Accidental inhalation is a real danger.

Even as the packages get smaller, the feature list gets larger. Microchip’s latest PIC16F178x parts are particularly well endowed with analog and motor-control circuitry, so much so that op amps and comparators may become obsolete. The new chips are aimed at motor- and motion-control designers but also, oddly, at lighting applications. You see, motion control and lighting now have a lot of similarities. Both rely on pulse-width modulation and feedback as ways to control current. Modern LED and fluorescent lighting now use fast switching of inductive loads to keep the lights on while minimizing power consumption and managing brightness. Edison’s tungsten filament this ain’t.

The spiffy part is, the PIC ’178x chips have so much op amp, ADC, DAC, and comparator goodness inside that practically no magnetics are required outside. Maybe a MOSFET driver for your motor and/or light, and a temperature sensor if you’re worried about the thing smoking, but that’s about it. And because the chip is wired with user-configurable internal feedback paths, you get to decide what signals are routed where without actually connecting any wires or using any external pins. The MCU’s pins are reserved for actual I/O, not just as an analog patch board.

Finally, and most significantly, all this analog feedback handling is done without any intervention from the PIC processor itself. Once you set up the analog portion of the chip, you can safely ignore it forever. There’s no code overhead, no polling loops, no software filtering required. Set it and forget it, and leave the PIC to do real software work. All for $1.47 in volume. Sweet.

Microchip’s popularity has attracted a lot of software developers, so programmers have plenty of options to choose from, including the company’s own tools. On that front, Microchip has again gone small. From its bewildering array of dozens of different compilers and development tools, the company has reduced the choices to: three.

There is now one C compiler for Microchip’s 8-bit devices, one for its 16-bit chips, and one for the 32-bit family. It you need things to be even simpler than that (perhaps you’re in marketing?) there’s the all-in-one MPLAB Suite that covers everything Microchip makes.

Oh, and the pricing is simpler, too. Compiler prices start at free and grow to $495 or the dizzying price of $995. All three versions are essentially the same, but the paid ones have more optimization switches for code size and performance. Even the free version is completely usable; there’s no program-size limitation or time bomb or anything like that. You just get somewhat more relaxed tech support.

Hint: Here’s a way to scam the company out of $995. Get yourself the free version of the compiler, develop your code, and then – just before you ship your product – sign up for a 60-day free trial of the full-featured version. Use that to recompile your code with all the performance and code-size optimizations turned on, cancel your trial, and owe nothing. Hah! I bet they never saw that coming. Stick it to The Man, brother.

Across the show floor at Design West was Express Logic, the San Diego firm that has been producing and refining the ThreadX RTOS for exactly 15 years. So popular is ThreadX that the company says it shipped its 1,250,000,000th copy this year. I bet they’re regretting their royalty-free business model right about now.

About half of those 1.25 billion installations are in wireless products from Broadcom, Marvell, Intel, and others. Another third of a billion are in inkjet printers, including popular models from HP. And ThreadX powers exactly two NASA spacecraft.

Ubiquity is never enough, though, so ThreadX now comes in a “Lite” form. Through a special joint arrangement, IAR (the Swedish development-tool company with the bright yellow logo) is offering a special version called ThreadX-Lite specifically for IAR customers. ThreadX-Lite is seriously “lite:” it requires only 2KB of ROM and less than 1KB of RAM. It’ll run on most ARM Cortex-M processors, of which there are many. Like the grown-up version of ThreadX, there are no royalties. A single payment of $4500 gets you everything you need, including source code, so go make those inkjet printers and space probes.

Speaking of ARM-based microcontrollers (and who isn’t?), STMicroelectronics’ STM32 F217 chip is showing itself to be an ideal platform for fast and cheap Ethernet. Running Express Logic’s NetX TCP/IP stack, the chip achieved 95% of wire speed (i.e., near perfect throughout) while consuming only 21%–33% of the CPU’s time. And if you want IPSec on top of that, the ’F217 has most of the SHA-1 and MD5 encryption hardware built in; the NetX software does the rest.

So much miniaturized technology compacted into one place. And we haven’t even talked about the microprocessor-controlled razor. 

2 thoughts on “Let’s Get Small”

Leave a Reply

featured blogs
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 20, 2022
This week was the 11th Embedded Vision Summit. So that means the first one, back in 2011, was just a couple of years after what I regard as the watershed event in vision, the poster session (it... ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Building safer robots with computer vision & AI

Sponsored by Texas Instruments

Watch TI's demo to see how Jacinto™ 7 processors fuse deep learning and traditional computer vision to enable safer autonomous mobile robots.

Watch demo

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

The Composite Power Inductance Story

Sponsored by Mouser Electronics and Vishay

Power inductor technology has made a huge difference in the evolution of our electronic system designs. In this episode of Chalk Talk, Amelia Dalton chats with Tim Shafer from Vishay about the history of power inductor technology, how Vishay developed the most compact and efficient power inductor on the market today and why Vishay’s extensive portfolio of composite power inductors might be the best solution for your next embedded system design.

Click here for more information about Vishay Inductors