feature article
Subscribe Now

Back Seat Driving Innovation

MOST, Nvidia, Spansion, and Other Stories

Modern automobiles are miracles of engineering refinement. Probably no other technology-related product calls from as many disciplines, has endured the same level of long-term evolution, has been actively used by more people, and has seen such steady long-term progress in capability, safety, and efficiency as your average family car. Each year, car companies take mountains of data and user feedback and pipe it into their engineering process, which results in an evolved, improved, safer product – most of the time, anyway. 

However, the technological advancement of the automobile is a bit paradoxical, particularly in the area of electronics. While modern automobiles are stuffed with complex electronics, the long lead times for design (typically five years or more) means that the latest-greatest car hits the dealer showrooms with electronic technology from six or seven years ago. Witness how many automotive entertainment systems still featured audio cassettes long after the majority of the world had moved on to CDs, and how still so few autos provide workable facilities for newer consumer technologies like portable media players. 

A recent Audi ad campaign boasts that the car is capable of making “over 2000 decisions per second.” Uh, Hmmm… My 1978 Radio Shack TRS-80 could beat that – running interpreted BASIC. Maybe that’s not really the best boast for a 2012 car. On the other hand, the average car now contains somewhere in the range of 35-80 microcontrollers. With all those compute engines flying in loose formation, we immediately are faced with the need for them to talk to each other. In most cases, car manufacturers have been working for the past several years to turn autos into rolling local area networks.

These networks are not without their problems, however. For years, automakers have relied on CAN (Controller Area Network) – a low-speed serial bus designed specifically for automotive applications. CAN solved the immediate problem of nightmare wiring harnesses in cars – where every variation on the car required different wiring harnesses with point-to-point connections for each pair of interconnected devices. However, the speed and lack of robust safety-critical features in CAN left plenty of room for subsequent improvement and replacement. More recent attempts at faster, more reliable networks like FlexRay have seen little adoption, and it is possible that good old Ethernet may end up being the standard networking protocal in your car as well as everywhere else.

Today, the MOST Cooperation, the standardization organization for the leading automotive multimedia network Media Oriented Systems Transport (MOST), announced that automotive Ethernet via MOST is rolling into our cars. This allows Ethernet protocols to be added to the infotainment-related audio and video protocols already supported by MOST. This is one step in the direction of media-related networking stepping over the divide into safety-critical areas like driver assistance. With Ethernet running around our cars, perhaps more commodity consumer devices will be able to play in the game as well – allowing portable devices to better leap over the vast lead times of automobile engineering lifecycles.

While the opportunities for computing in automobiles are ample, the problem has been addressed mostly ad-hoc by a big collection of microcontrollers, each working alone on a single problem. That approach may put a lot of MIPS into a typical car, but it does not allow for some of the truly amazing capabilities we can get by taking advantage of modern computing power. While microcontrollers can do a fine job with anti-lock braking, engine management and control, traction control, climate control, and other commonly available features and functions, we need a LOT more computing power for anything involving machine vision, 3D information display, and other mega-computations.

Fortunately, a variety of suppliers are bringing innovation into the automotive space that will address many of these problems concurrently. FPGA companies have attacked the automotive sector with automotive-specific versions of FPGAs that promise many advantages, including reducing the design-in cycle (allowing hardware changes to be made even after the car is deployed in the field), flexibility of use for multiple variants of the car (where features can be added or removed from the FPGA while the same board is used in all variants), and compute acceleration for challenging problems involving signal and video processing. FPGAs can flexibly address the many networking challenges in the auto as well – providing the ability to bridge between multiple networking standards and protocols.

Recently, even some PC-centric semiconductor companies like NVIDIA have jumped into the automotive fray. The same technologies used in computer graphics acceleration turn out to be handy for automotive applications like 3D rendering for advanced virtual instrument clusters and “infotainment” features like 3D GPS/Navigation rendering. However, the real payoff with advanced compute acceleration will be in the “driver assistance” realm, which has the potential to increase automotive safety dramatically. Capabilities like lane-departure detection, adaptive cruise control, traffic sign recognition, driver alertness monitoring, blind-spot monitoring, assisted parking, and “augmented reality” features like night vision and heads-up displays could work together to protect us against the weakest link in the automobile safety chain – the driver.

Earlier this month, flash memory supplier Spansion announced that they were partnering with NVIDIA to deliver their Spansion GL NOR flash memory in the package with NVIDIA’s Tegra automotive processors. Packaging high-performance non-volatile memory right with the applications processor solves a number of problems for automotive designers, including reliability, board complexity, and memory subsystem bandwidth. Having pre-matched, pre-tested non-volatile memory encased in the processor package makes integration a lot simpler and development of applications a lot more straightforward.

We are still years to decades away from the autonomous, self-driving car (although Google has made considerable headlines with their experiments in that realm). In the meantime, though, many of these flexible, programmable device technologies will help shorten the delay in bringing advances from the rest of the electronics world into the venerable automobile. High-end cars are already boasting features like adaptive cruise control, automatic parking, and rudimentary collision avoidance capabilities. It won’t be long until those features trickle down into the mainstream and all of us will be a little safer on the road.

2 thoughts on “Back Seat Driving Innovation”

  1. How old is your car?

    Can you picture driving something with lane departure warnings, driver alertness monitoring, adaptive cruise control, sign recognition, heads-up display, collision avoidance, auto-parking, and night vision?

  2. >How old is your car?

    My car is quite old.

    With my 43 year old MG Midget, I’m looking at easily retro-fittable, yet tiny and relatively low power electronics. Here’s what’s happening so-far:

    – Theft-proof invisible car-audio system (wireless to your smartphone)

    – Car HUD implemented by Android phone/smartphone

    – Google GPS (better than others for some locales!)

    – Tamper deterrence via car mounted miniature wireless IP Cameras. (viewed thru smartphone)

    – Arduino shields with android/host USB connection for other functions

    – And it still looks and feels exactly like a 43 year old vintage car!

Leave a Reply

featured blogs
Nov 25, 2020
It constantly amazes me how there are always multiple ways of doing things. The problem is that sometimes it'€™s hard to decide which option is best....
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...
Nov 25, 2020
It might seem simple, but database units and accuracy directly relate to the artwork generated, and it is possible to misunderstand the artwork format as it relates to the board setup. Thirty years... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...

featured video

AI SoC Chats: Protecting Data with Security IP

Sponsored by Synopsys

Understand the threat profiles and security trends for AI SoC applications, including how laws and regulations are changing to protect the private information and data of users. Secure boot, secure debug, and secure communication for neural network engines is critical. Learn how DesignWare Security IP and Hardware Root of Trust can help designers create a secure enclave on the SoC and update software remotely.

Click here for more information about Security IP

featured paper

Streamlining functional safety certification in automotive and industrial

Sponsored by Texas Instruments

Functional safety design takes rigor, documentation and time to get it right. Whether you’re designing for the factory floor or cars on the highway, this white paper explains how TI is making it easier for you to find and use its integrated circuits (ICs) in your functional safety designs.

Click here to download the whitepaper

Featured Chalk Talk

Mindi Analog Simulator

Sponsored by Mouser Electronics and Microchip

It’s easy to go wrong in the analog portion of your design, particularly if you’re not an analog “expert.” Electrical simulation can help reduce risk and design re-spins. In this episode of Chalk Talk, Amelia Dalton chats with Rico Brooks of Microchip about the MPLAB Mindi tool, and how it can help reduce your design risk.

Click here for more information about MINDI Analog Simulator.