feature article
Subscribe Now

Engineering an Experience

The Legacy of Steve Jobs

In 1976, when Apple Computer was launched, I was in high school.  A year later, when the company launched the Apple II – my soul was drawn to the device.  For me, it embodied the promise of a new future, where intelligent machines blended functionally and aesthetically into our lives, changing the very meaning of humanity itself.  For me, the Apple II was not so much a device as a piece of art and inspiration – a window into the future. 

That’s because I was both a hard-core nerd and a sappy teenager at the same time. 

The Apple II didn’t deliver on all that, of course.  It would have taken a lot of vision to make the conceptual leap from the 8-bit 6502-powered machine with a cassette tape storage device and an RF modulator sending NTSC video to the TV on Channel 3 – to the reality of what we know today with the iPhone – a pocket-sized supercomputer, connected to a global information network, that can be operated by an eight-year old – all for the price of a family dinner at an upscale restaurant.

That leap required decades of development from tens of thousands of brilliant engineers – many of whom are reading this article today.  We all know the secret, right?  Steve Jobs didn’t invent the iPhone.

The Apple we know is the product of two creative geniuses – Steve Jobs and Steve Wozniak.  “Woz” has always been easy for us.  Woz is the engineer’s engineer.  He practices hardware design as an art, and, like any artist, he is almost inseparable from that which he creates.  For engineers, Woz is easy to understand and admire.  He is what the nerd-brain inside all of us aspires to – the pure essence of engineering for engineering’s sake – out-of-the-box problem solving extraordinaire. Woz’s incredible ability to find the uncommon solution to the common technical problem positions him as perhaps the greatest minimalist in history in the art of digital design.  Every engineer who has passed on tales of the “Woz Machine” (a disk controller implemented as a state machine with an insanely-optimized gate count, which dramatically reduced the cost of floppy disk control) can connect directly with the genius of Woz.

For most engineers, the genius of Steve Jobs exists on an entirely different plane.

Steve Jobs embodied all that was missing in most engineers.  Jobs and Woz together were the perfect storm of technology creativity.  Steve Jobs was intimately connected to the way ordinary people think about machines.  While legions of engineers were off reducing gate counts, perfecting firmware, attacking power consumption, and optimizing critical paths – Steve Jobs was honing his vision of the object all of that technology would become.  Far beyond what we think of as “marketing”, Jobs delivered something that reached past the gathering and classification of customer requirements.  He had a connection with the imagination of his customer, and he intuitively knew how to fold that imagination into the product his team was creating.

Engineers I’ve known through the years typically don’t understand the “Jobs Factor”. 

“The iPod is just a disk drive with a pair of headphones. Nothing special at all.” 

How, then, did so many companies – both before and after the iPod’s meteoric rise – try and fail to market successful music players?  Even those that blatantly copied the most esoteric details of the iPod – before adding their own special “differentiation” – completely and utterly failed to achieve traction in the market.  Others had online music stores with thousands of popular tracks.  Others had smooth interfaces, simple controls, informative displays, larger storage, better sound quality, and lower prices.  Others were “open.”

They did not have the magic. 

As engineers, we love for things to be reducible to a formula.  We know that if we lower power consumption, battery life will increase.  If we increase clock speed, our device will be faster, snappier, and more responsive.  A set of specifications or requirements becomes a list of problems for us to solve – engaging our engineering brains in just the way we’ve trained ourselves.  Some specifications we will meet without difficulty.  Others may cause us to struggle, and we may deliver slightly less than we hoped.  A very few will lead to some inspiration or burst of creativity that allows us to over-deliver in a big way.  These are the creations that give us a sense of pride in our work.

Steve Jobs showed us that there is no formula for creating products that inspire our customers.  Some may say that Apple’s secret is industrial design, yet there are thousands of companies with world-class industrial designers on staff that fail to deliver Apple’s magic.  Some say that Apple gets an unfair advantage because of legions of loyal fans who eagerly slurp up every new piece of plastic, metal, and glass to emerge from Cupertino. This, however, is the effect and not the cause.

Perhaps the easiest way to understand the genius that Steve Jobs brought to our industry is to think about movies.  Like technology products, movies are massively collaborative efforts that are the product of hundreds of creative minds working together.  There is no formula for a great movie.  Countless times, studios will start with enormous budgets, choose great scripts, hire talented actors, grab the best wardrobe designers, cinematographers, editors, and art directors – only to produce movies that completely flop.  Other times, the magic inspiration will flow from a talented director’s vision, giving us a timeless masterpiece that far transcends the sum of its parts.  One could never compare and judge two movies by lining up their spec sheets.  This is because movies are art.

Jobs showed us that electronic products are works of art too. 

With Steve Jobs passing, an enormous hole is left in our industry.  Whether we fill that hole and retain the lessons of Jobs is largely up to us as engineers.  We need to learn to engineer experiences, rather than devices and systems.  Like movies, Apple’s products are all experiences – carefully choreographed from the opening of the box to the initial assembly to the software environment that supports them.  We must put the humanity of our customer first and strive to create experiences that they will “love” and not just “use.”  We need to put our own values aside and empathize with the average person – who is our customer – because the average person does not think like an engineer. 

I have high hopes and expectations for Apple without Jobs.  In my experience, company culture is something that mysteriously persists – even when most of the people in the company have changed – including the leadership.  If Jobs’s values are infused into the culture of Apple, the collective culture will know how to do what he did – although in a different way. 

Jobs’s lasting influence will extend far beyond Apple, however.  He dared us to think differently about the products we design.  He raised the standard by which all of us do our work – pulling our heads out of the bits and latches and asking us to be in touch with the passions, emotions, and even weaknesses and vulnerabilities of our customers.  If we all do that – even for a moment each day in our work – his legacy will never die.

 

Apple Macintosh icon designed by Susan Kare.

Leave a Reply

featured blogs
Jan 21, 2021
'€œWhether we are based on carbon or on silicon makes no fundamental difference; we should each be treated with appropriate respect.'€ -- Arthur C. Clarke (2010: Odyssey Two)...
Jan 21, 2021
We have recently interviewed some of our EMEA team members to hear about their unique backgrounds and experiences shaping the future of technology with Cadence. For our second interview, we spoke... [[ Click on the title to access the full blog on the Cadence Community site....
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...
Jan 19, 2021
I'€™ve been reading year-end and upcoming year lists about the future trends affecting technology and electronics. Topics run the gamut from expanding technologies like 5G, AI, electric vehicles, and various realities (XR, VR, MR), to external pressures like increased gover...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

featured chalk talk

Time Sensitive Networking for Industrial Automation

Sponsored by Mouser Electronics and Intel

In control applications with strict deterministic requirements, such as those found in automotive and industrial domains, Time Sensitive Networking offers a way to send time-critical traffic over a standard Ethernet infrastructure. This enables the convergence of all traffic classes and multiple applications in one network. In this episode of Chalk Talk, Amelia Dalton chats with Josh Levine of Intel and Patrick Loschmidt of TTTech about standards, specifications, and capabilities of time-sensitive networking (TSN).

Click here for more information about Intel Cyclone® V FPGAs