feature article
Subscribe Now

A Sweetener for Research Labs

Rhomap Tries to Simplify Magneto-Transport Measurement

For many people, the arrival of the fall holiday season means that treats are on the way. And, for that extra bit of fun and “I made this myself” pride, there’s nothing like making candies and fudges and other confections at home.

But working with sugar can’t be taken lightly. In order to get good, consistent results, it takes a steady hand and – most importantly – good temperature control.

So imagine if your family candy-making project started like this: before you could whip out the sugar and fruit and cream and all the other obvious goodies, you first needed to go to the hardware store and get some metal… (if you’re feeling adventurous, you might include a dollop of mercury and some glass to blow with that… challenging the glass to withstand the temperature shock, dancing with your own version of sweet, slow-acting fugu)… you’d then form the metal, perhaps with the assistance of a metal shop… you’d integrate whatever temperature-sensing mechanism you chose, make sure it works, and – critically – calibrate it against known temperatures. And then, voilà: you would have a thermometer you could use to make your candy. Never mind that the rest of the family has gotten bored and moved on to other things by then…

Sounds crazy, but, apparently, this is how the world of physics research works. This type of basic research yields many of the effects that we take advantage of in our semiconductors, and it’s typically done in a university or government lab (particularly if the causation or prevention of lethal outcomes is at stake or if cool words like “kinetic” apply). Many ideas are tried and many ideas are jettisoned in the pursuit of something that will pass commercial muster.

The research community is small and perennially poor, not exactly an exciting target market for high-flying venture capitalists. The problem, according to Dr. Del Atkinson of Durham University in the UK, is that very subtle leading-edge effects require very sensitive measurements – of the kind not readily handled by off-the-shelf equipment.

As an example, Atkinson studies so-called “magneto-transport” for nano-level devices. This area covers the subtle magnetic effects being harnessed for such things as spintronics. These constitute a variety of phenomena being researched for possible exploitation in commercial products.

The problem is that the first six months or year of a project is spent designing and building the measurement systems that will be used in the actual experiments. And the funders of projects have started looking somewhat askance at their money going towards that instead of the actual research work.

As is so often the case with new ideas, Atkinson’s team developed a system for a project of their own, and it worked with unusual sensitivity and at room temperatures. For their own convenience, they designed the setup to be modular so that they could swap out probes and setups easily. They wrapped a software interface around it to simplify configuration.

And then they started showing their results at conferences and talking to people afterwards. Folks were impressed, intrigued – the kind of reaction that gets you thinking, “Hmmm… maybe we have something here…”

And so they have started a company called Rhomap to sell their setup to other research organizations.

What’s interesting is that the fundamental technology isn’t that old. They’re focusing on various interactions between current and magnetic field. At the simplest end, there’s the Hall effect, the upshot of which is that a magnetic field applied perpendicular to a current will cause the electrons not to flow straight, but to curve, causing a build-up of electrons on one side and creating an electric field that’s perpendicular to both the current and magnetic field.

Magnetoresistance in metals is another area they study: this is the variation in electrical resistance caused by different magnetic interactions. Rhomap focuses on “anisotropic magnetoresistance (AMR),” which describes the behavior of materials whose electrical resistance changes with the direction of an applied magnetic field – being highest when aligned parallel to the current and lowest when aligned anti-parallel. They also look at so-called “giant” and “tunneling” magnetoresistance, which we covered in our spintronics article some time back.

These effects are well established, some being known since the 1800s; it’s just the way we exploit them that’s new.

The actual measurement configurations also aren’t new. Because of the subtlety of these effects, they can’t use simple two-probe systems to measure absolute resistance: the resistances of the probes and other parts of the setup become part of the measurement and can’t be easily subtracted out. (Although two-probe systems are OK if looking just for resistance changes, where the extra resistive components drop out as common-mode contributions.)

Instead, four-probe systems are used. In the simplest linear case, two probes are used to establish a current, and then two separate probes (in between the first two) are used to measure the voltage. Because there’s no current flowing in the voltage-measuring probes, there are no other resistances messing up the values.

Again, nothing new; I seem to recall this being called a Kelvin connection from my product engineering days many years ago.

For measuring two-dimensional resistivity, four or more probes can be placed around the material in what’s called a Van der Pauw setup. Pairs of probes can be used to drive and measure, exchanging the pairs for a full set of measurements.

So if these concepts are old, where’s the news? First, these are old techniques being employed for gauging miniscule values. Sensitivity is of the essence. It has historically required cold temperatures. The ability to achieve precise results at room temperature is turning some heads.

Second, there’s the practical matter of being able to use one setup for more than one specific measurement. Modularity appears to be a novel thing here. With Rhomap’s system, you can swap out the probe assembly and switch projects quickly. The software user interface further drives usability.

On the one hand, it’s surprising that no one has done this before. On the other hand, we go back to our opening assertion: the research market isn’t traditionally attractive to commercial ventures – unless the sales translate to commercial sales, which isn’t likely to be the case here. These are small, relatively low-priced systems. Commercial setups would require larger-scale systems – which do exist. So the research folks are left on their own.

It’s early days for Rhomap; who knows whether a business by researchers for researchers can survive. It will depend on expectations and patience. But if they can make it work, then the funders of programs will no longer have to wait for custom-built equipment with each project. Instead, they can eagerly watch as candy starts rolling off the line faster than Lucy can stuff it in her mouth.

 

Additional info:

Rhomap

Leave a Reply

featured blogs
May 21, 2022
May is Asian American and Pacific Islander (AAPI) Heritage Month. We would like to spotlight some of our incredible AAPI-identifying employees to celebrate. We recognize the important influence that... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Intel® Agilex™ M-Series with HBM2e Technology

Sponsored by Intel

Intel expands the Intel® Agilex™ FPGA product offering with M-Series devices equipped with high fabric densities, in-package HBM2e memory, and DDR5 interfaces for high-memory bandwidth applications.

Learn more about the Intel® Agilex™ M-Series

featured paper

Introducing new dynamic features for exterior automotive lights with DLP® technology

Sponsored by Texas Instruments

Exterior lighting, primarily used to illuminate ground areas near the vehicle door, can now be transformed into a projection system used for both vehicle communication and unique styling features. A small lighting module that utilizes automotive-grade digital micromirror devices, such as the DLP2021-Q1 or DLP3021-Q1, can display an endless number of patterns in any color imaginable as well as communicate warnings and alerts to drivers and other vehicles.

Click to read more

featured chalk talk

Twinax Flyover Systems for Next Gen Speeds

Sponsored by Samtec

As the demand for higher and higher speed connectivity increases, we need to look at our interconnect solutions to help solve the design requirements inherent with these kinds of designs. In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec discuss how Samtec’s Flyover technology is helping solve our high speed connectivity needs. They take closer look at how Samtec’s Flyover technology helps solve the issue with PCB reach, the details of FLYOVER® QSFP SYSTEM, and how this cost effective, high–performance and heat efficient can help you with the challenges of your 56 Gbps bandwidths and beyond design.

Click here for more information about Twinax Flyover® Systems for Next Gen Speeds