feature article
Subscribe Now

Benefits and Tradeoffs of EDA in the Clouds

Only a few weeks after Motorola® launched the XoomTM, Apple® launched the iPad 2TM. These technological marvels, like their predecessors, illustrate several fundamental challenges that all design engineers face today: designs are getting more complex, and competition more fierce. As a result, the verification effort required to validate these designs is growing exponentially while the schedules are shrinking.  Consequently, design engineers’ jobs are getting much harder.

Companies must dramatically grow their capital investments for IT infrastructure to support this exploding demand for verification. This is costly, time consuming, and in many cases, is constrained by practical limitations, such as physical space, power availability, cooling capacity and IT support resources. This is in addition to the cost of the hardware itself, and in these times of tight budgets, most CFOs balk at increasing capital expenses (CAPEX).  It’s no wonder that customers tell us that verification is already the most expensive aspect of ASIC/SoC design. The dilemma from the compute infrastructure perspective is clear: support the growing verification demand with limited cost increases or take the blame for lengthening verification schedules.

While it’s obvious that larger and more complex designs need more verification throughput, this is not a static requirement.  Verification environments typically have usage peaks and valleys, and with some over-provisioning to support schedules, compute resources will be underutilized during valleys and overcommitted during peaks. Early in the design, engineering is the limiting factor as more bugs are found than can be fixed immediately. Later, as finding the remaining bugs becomes harder, larger simulations, longer individual tests and growing queues are inevitable. Infrastructure is then at 100% capacity and progress slows.

The above scenario is nothing new. For years, IT engineers have provisioned hardware with these variable demands in mind. While all companies would like to support verification peaks, this is now proving too costly and inherently inefficient, since provisioning for the worst case peaks means that for most of the project, the servers are underutilized.  But even the best laid plans can fall apart when the unexpected occurs – like a last minute bug.  Even if the fix is simple, the verification may require a full regression repeat, which can take days or even weeks. A schedule delay is virtually certain. So in addition to the normal peaks and valleys, engineers must plan for unexpected, last minute problems.

The ideal solution would be combining baseline provisioning to handle average verification loads with elastic and scalable access to compute resources able to quickly ramp up verification capacity to meet peak verification needs. In worst-case scenarios, rapid scalability would allow engineers to compress weeks of verification into a day or two.  Equally important, the solution should scale down when the demand subsides to keep costs in check. Is cloud computing the answer?

It is certainly true that cloud computing has the potential to satisfy scalability requirements. Cloud computing provides the ability to access hundreds of servers extremely rapidly.  It is also flexible, with the ability to turn off the servers instantly once they’re no longer needed. In fact, there are several interesting economic benefits associated with the adoption of cloud computing. In addition to handling last minute bugs while avoiding schedule delays, having virtually infinite resources means that engineers can easily compress schedules. If a week-long regression could be completed in a day, early market entry would be possible, which should lead to more revenue and higher market share. Cloud computing also requires no additional CAPEX because it is an operating expense (OPEX). CAD managers may then have the flexibility to spend more money on other needed resources.

But before a company opts for such a dramatic change to its EDA infrastructure, it must consider the following key tradeoffs.  These include:

  • Security: Cloud computing providers are likely more secure than the average enterprise customer.  As part of their business model, they undergo independent security audits regularly. It is therefore important to check for industry-accepted certifications such as ISO27001/27002, SAS 70 Type II and others. Cloud providers know they will have no business if the customers’ data is not secure.
  • Liability: No company is going to provide 100% liability against theft, and cloud customers must be prepared to accept this limitation. This is why cloud providers focus so much attention on security.
  • Corporate Policies: Many companies have policies on moving corporate IP offsite. These policies typically must be reviewed, and should be updated as needed.
  • Licensing: Today’s installed software licensing agreements don’t cover cloud computing. New licensing agreements will come into play, and the time and attention needed must be factored into planning.
  • Geography: Some countries have restrictions on technology exports. It is therefore important to work with cloud computing providers with sufficient global reach.
  • Automation: Extending an EDA environment to the cloud can be very straightforward, or depending on the customers’ requirements, may require an experienced partner to make the initial transition faster.

For EDA tools like verification, cloud computing represents the next paradigm shift. It offers the potential to deliver dramatic increases in verification throughput while simultaneously optimizing long-term costs. It can even offer a company the option of cost-effectively pulling in development schedules to meet more aggressive market and revenue goals.  With the right partner and a mature cloud provider, companies will be prepared to verify the largest designs – today and in the future.

Leave a Reply

featured blogs
May 21, 2022
May is Asian American and Pacific Islander (AAPI) Heritage Month. We would like to spotlight some of our incredible AAPI-identifying employees to celebrate. We recognize the important influence that... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

Flexible Power for a Smart World

Sponsored by Mouser Electronics and CUI Inc.

Safety, EMC compliance, your project schedule, and your BOM cost are all important factors when you are considering what power supply you will need for your next design. You also need to think about form factor, which capacitor will work best, and more. But if you’re not a power supply expert, this can get overwhelming in a hurry. In this episode of Chalk Talk, Amelia Dalton chats with Ron Stull from CUI Inc. about CUI PBO Single Output Board Mount AC-DC Power Supplies, what this ac/dc core brings to the table in terms of form factor, reliability and performance, and why this kind of solution may give you the flexibility you need to optimize your next design.

Click here for more information about CUI Inc PBO Single Output Board Mount AC-DC Power Supplies