feature article
Subscribe Now

Getting More Grounded

Cadence PDN Tool Tames Tricky Power Networks

When doing a digital design, the power network is the last thing you want to worry about.  It can’t be that difficult, right?  You got your power and your ground and some big ‘ol FR4 acreage with nothing but copper as far as the eye can see…

Well, nothing but copper and a few vias, actually.  Oh, and this part here where it gets narrow – and this part over here where there seems to be some nasty resonant frequency that drops the output… Wow, our circuit totally doesn’t work.  What’s the deal? 

Trying to debug power delivery network (PDN) problems without specialized tools is like cooking up a voodoo brew using only ingredients from 7-11.  Fortunately, Cadence is coming out with a new set of PDN capabilities in its board design tools that will demystify the situation – a lot.  The PDN Analysis tool will be part of Cadence’s Allegro board design suite, and it will offer a beginning-to-end solution to signal integrity and power analysis right where you need it – where you can do the PCB edits to correct the problems.

At the heart of the analysis engine is a Method of Moments (MoM) full-wave field solver that can quickly identify the eddies and whirlpools of current on your innocent-looking power plane.  The Cadence solver was developed in collaboration with the University of Illinois at Urbana Champaign.  The MoM solver is only a part of a broad-based set of capabilities Cadence is throwing at PDN analysis, however.  The flow is designed to allow you to analyze, edit, and then re-analyze quickly – and with selectable degrees of coarseness depending on whether your goal is accuracy or speed of analysis.  

Screen_shot_2011-02-17_at_12.21.13_PM.png

Current direction with arrows.  (Image courtesy of Cadence)

The idea is to locate “hot spots” of current and temperature in your layout and to guide the stackup design plane/shape split scheme.  It will also help you get your decoupling capacitors “just right” so you don’t over- or under-decap your board.  With this tool, you’ll be able to throw out the “needs more cowbell” method of decoupling cap design in favor of something a little more scientific.

The trickiest part, of course, is finding and fixing problems with resonant frequencies in your design.  Here is where the analysis technology really shines.  The tool can give both early, pre-layout feedback on resonant frequencies and detailed analysis of layouts.  If you’re into fancy visualizations (they really impress the boss) the built-in graphing capabilities assure that there will be bunches of beautiful PowerPoint slides for project review meetings.

Screen_shot_2011-02-17_at_12.19.35_PM.png

3D visualization (Image courtesy of Cadence)

For now, Cadence is just making a “technology” announcement, but we feel confident that means a “product” announcement will soon follow.  Meanwhile, you’ll just have to calculate those IR drops the old-fashioned way. 

Leave a Reply

featured blogs
Nov 22, 2024
We're providing every session and keynote from Works With 2024 on-demand. It's the only place wireless IoT developers can access hands-on training for free....
Nov 22, 2024
I just saw a video on YouTube'”it's a few very funny minutes from a show by an engineer who transitioned into being a comedian...

featured video

Introducing FPGAi – Innovations Unlocked by AI-enabled FPGAs

Sponsored by Intel

Altera Innovators Day presentation by Ilya Ganusov showing the advantages of FPGAs for implementing AI-based Systems. See additional videos on AI and other Altera Innovators Day in Altera’s YouTube channel playlists.

Learn more about FPGAs for Artificial Intelligence here

featured paper

Quantized Neural Networks for FPGA Inference

Sponsored by Intel

Implementing a low precision network in FPGA hardware for efficient inferencing provides numerous advantages when it comes to meeting demanding specifications. The increased flexibility allows optimization of throughput, overall power consumption, resource usage, device size, TOPs/watt, and deterministic latency. These are important benefits where scaling and efficiency are inherent requirements of the application.

Click to read more

featured chalk talk

Ultra-low Power Fuel Gauging for Rechargeable Embedded Devices
Fuel gauging is a critical component of today’s rechargeable embedded devices. In this episode of Chalk Talk, Amelia Dalton and Robin Saltnes of Nordic Semiconductor explore the variety of benefits that Nordic Semiconductor’s nPM1300 PMIC brings to rechargeable embedded devices, the details of the fuel gauge system at the heart of this solution, and the five easy steps that you can take to implement this solution into your next embedded design.
May 8, 2024
39,099 views