feature article
Subscribe Now

LatticeECP3 Device Is First Low Cost FPGA to Support Broadcom HiGigTM Protocol

HILLSBORO, OR–(Marketwire – November 29, 2010) – Lattice Semiconductor Corporation (NASDAQ: LSCC) today announced the immediate availability of the HiGig™ MAC IP core for its award winning, low cost LatticeECP3™ FPGA family. Multiple individual devices interconnected via the HiGig protocol operate as one logical network, seamlessly providing features like quality of service (QoS), mirroring and link aggregation. The HiGig MAC ensures that the Media Access rules specified in the 802.3ae IEEE standard and HiGig Protocol definitions are met while transmitting a frame of data over Ethernet. On the receive side, it extracts the different components of a frame and transfers them to higher applications through a FIFO interface. With this new Lattice IP core, designers will be able to implement low cost network solutions using Broadcom devices. 

Compliant with Broadcom HiGig and HiGig2™ protocol definitions, the HiGig MAC IP core has a 64-bit wide internal data path operating at a maximum frequency of 156 MHz on the LatticeECP3 FPGA. The core provides XGMII and XAUI interfaces to the PHY layer and supports variable-sized packet transmission with fixed-sized messaging capability (HiGig2 only). With multicast address filtering and 16-bit statistics counters, the core requires approximately 4100 FPGA look-up tables (LUTs) for HiGig implementations and approximately 4700 FPGA LUTs for HiGig2 implementations.

“Broadcom continues to expand the vibrant HiGig ecosystem and we are pleased to welcome Lattice to the growing number of partners that support HiGig,” said John Mui, Senior Product Line Manager at Broadcom Corporation. “The low power LatticeECP3 FPGA family, coupled with the HiGig IPcore from Lattice, provides a cost effective platform for interfacing with Broadcom devices, enabling high speed Ethernet solutions for the Service Provider, Data Center and Enterprise markets.”

 “The small footprint HiGig MAC IP core will help designers develop bridging and switching solutions with Broadcom devices,” said Lalit Merani, Lattice Senior Product Marketing Manager. “This is another example of how Lattice has responded to the needs of its customers by focusing on low-cost and low-power design with the LatticeECP3 FPGA family.”

The HiGig MAC IP core developed by Lattice is supported by Lattice’s IPexpress™ FPGA design tool module. Included as a standard feature in the Lattice Diamond™ design environment, the IPexpress module significantly reduces design time by allowing IP parameterization and timing analysis on the designer’s desktop. This allows users to customize Lattice’s extensive library of IP functions for their unique applications, integrate them with their proprietary FPGA logic designs and evaluate the overall device operation via simulation and timing analysis prior to making any IP purchase commitments.

Pricing and Availability

The HiGig MAC IP core is available now and can be ordered through Lattice sales with a low list price of $5,000. For more information about the IP core please visit http://www.latticesemi.com/products/intellectualproperty/ipcores/higigethernetmac/index.cfm.

About the LatticeECP3 FPGA Family

The LatticeECP3 FPGA family is comprised of five devices that offer standards-compliant multi-protocol 3.2G SERDES, DDR1/2/3 memory interfaces and high performance, cascadable DSP slices that are ideal for high performance RF, baseband and image signal processing. Toggling at 1Gbps, the LatticeECP3 FPGAs also feature fast LVDS I/O as well as embedded memory of up to 6.8 Mbits. Logic density varies from 17K LUTs to 149K LUTs with up to 586 user I/O. The LatticeECP3 FPGA family is ideally suited for deployment in high volume cost- and power-sensitive wireline and wireless infrastructure applications.

About Lattice Semiconductor

Lattice is the source for innovative FPGAPLD, programmable Power Management and Clock Management solutions. For more information, visit www.latticesemi.com.

Leave a Reply

featured blogs
Sep 28, 2020
Have you ever been trying to leave a party or a conversation, and someone says '€œOne last thing'€¦?'€ Now, you have a decision to make, listen politely or run, run as fast as you can. Well, we'€™re going to say it. '€œOne last thing'€¦'€ But please don'€™t ...
Sep 28, 2020
Power is HOT and it touches everything and everybody! But we can help with power analysis for your chip!! Do you want to: Sneak peek inside the schematic? Analyze power for various blocks? Identify... [[ Click on the title to access the full blog on the Cadence Community sit...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Texas Instruments: Pushing Power Further

Sponsored by Texas Instruments

Power is all around us. Every connection, every invention begins with power. Watch this short video to see how we are pushing the limits of power management.

Explore our power density portfolio

Featured Paper

4 audio trends transforming the automotive industry

Sponsored by Texas Instruments

The automotive industry is focused on creating a comfortable driving experience – but without compromising fuel efficiency or manufacturing costs. The adoption of these new audio technologies in cars – while requiring major architecture changes – promise to bring a richer driving and in-car communication experience. Discover techniques using microphones, amplifiers, loudspeakers and advanced digital signal processing that help enable the newest trends in automotive audio applications.

Click here to download the whitepaper

Featured Chalk Talk

Thermal Bridge Technology

Sponsored by Mouser Electronics and TE Connectivity

Recent innovations can make your airflow cooling more efficient and effective. New thermal bridges can outperform conventional thermal pads in a number of ways. In this episode of Chalk Talk, Amelia Dalton chats with Zach Galbraith of TE Connectivity about the application of thermal bridges in cooling electronic designs.

More information about TE Thermal Bridge Technology