feature article
Subscribe Now

Escaping from the Silo

Fixing the ‘Anti-Social’ World of EDA Tools

Background – An Imperfect World

In an ideal world, EDA tools would represent a perfect match for the chip engineer’s needs, and their use model would be architected to match his design flow rather than the other way around. In the real, Perl-script infested world, EDA tools are islands between which users must build their own bridges. Moves toward data consistency help to some extent, but beyond that things become very cumbersome. Decisions made to address one problem, let’s say power consumption, can have an adverse affect on another, such as timing. In a world of point tools there is a distinct lack of multi-disciplinary intelligence. As a consequence, design closure when faced with the contradictory constraints of today’s multi-scenario designs, is in many cases unobtainable.

One area where this problem has been conquered is logic synthesis. When faced with multiple conflicting constraints (timing vs. area for example) synthesis tools have the visibility to make trade-offs – keeping one in mind when optimizing another. It would be unthinkable to run one tool to optimize timing and another to optimize area. But that’s what we have in areas like power and clock synchronizer setup, where optimizations made to meet power consumption targets can undo the careful efforts to make the design ‘clock domain crossing (CDC) clean’.

Is the solution to simply merge all EDA tools into one? Practicalities such as pricing aside, as consumers we’re conditioned to be skeptical of multi-purpose solutions. The solution which tries to offer everything doesn’t do anything particularly well. A better, more practical, solution would be based on the principles of consistent setup, intelligent data sharing, and unified analysis/debug as outlined in Figure 1.

Escaping-the-Silo-Figure1.jpg

Figure 1: The Unified Environment 

What we’re talking about here is another evolutionary step beyond an approach such as OpenAccess. That approach does not address the problem of conflicting objectives across the tool set. Just because your power optimization tool can co-exist with your ATPG tool doesn’t guarantee that they aren’t taking your netlist in incompatible directions.

In Figure 1, the iterations between tools represent more than mere data sharing. Instead, the idea is that one tool is intelligent enough not to break the optimizations put in place by another such that its objectives are no longer met.

A Proposal – Efficiency Through Communication

So how exactly do we make the various tools in a typical design flow less ‘anti-social’, and more willing to cooperate with other tools in the flow? The basic principle is that no one tool should ever do something to the detriment of the design. For example, power gating shouldn’t break clock domain synchronization schemes; timing optimization ‘tricks’ shouldn’t reduce test coverage, etc.

One technique to enable this is to use consistent setup between tools.  Take the example of ‘CDC aware’ power optimization – if the power optimization tool can take clock domain information on board, additional gating on asynchronous clock interfaces can be avoided.

Let’s take another case where two tools ‘share’ a responsibility. Let’s assume that the task is to ensure that clock to clock false paths are correct. The first instinct would be to simply verify the false paths using a timing exception verification tool. This, however, only covers paths between synchronous clocks, suggesting mutual exclusivity is accomplished through verifiable clock muxing for example. If the clocks are asynchronous there is likely no related logic in the clock tree to verify so formal analysis will either be inconclusive or simply noisy.

One example of a combined solution is outlined in Figure 2, where timing exceptions between synchronous clocks are verified using Atrenta’s SpyGlass®-TXV timing exception verification tool and the correct synchronization of interfaces between asynchronous clocks is handled by the SpyGlass-CDC tool, giving complete overall coverage.

Escaping-the-Silo-Figure2.jpg

Figure 2: An approach to comprehensively verify a multi-clock design 

As a chip designer and EDA tool user, it’s imperative to see the broader picture when using any tool which modifies your design in any way. Not doing so will put you into an endless loop of trying to converge on multiple competing objectives, and potentially introduce the risk of missing a real chip killer. If the tools you are using aren’t playing ball, maybe it’s time to ask for better tools.

About the Author:  Ron Craig, Senior Marketing Manager, Atrenta 
Ron Craig has more than 15 years of experience in EDA and semiconductor design. Prior to joining Atrenta, Ron held a range of positions in design, consulting, applications and marketing at Amphion Semiconductor, Sony Semiconductor and Synopsys Inc.  Ron has a Bachelor of Engineering from The Queen’s University, Belfast.  (ron@atrenta.com)

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

FleClear: TDK’s Transparent Conductive Ag Film
Sponsored by Mouser Electronics and TDK
In this episode of Chalk Talk, Amelia Dalton and Chris Burket from TDK investigate the what, where, and how of TDK’s transparent conductive Ag film called FleClear. They examine the benefits that FleClear brings to the table when it comes to transparency, surface resistance and haze. They also chat about how FleClear compares to other similar solutions on the market today and how you can utilize FleClear in your next design.
Feb 7, 2024
11,092 views