feature article
Subscribe Now

Inside-Out Pixels and Quantum Dots

They say good things come in threes. Or maybe it’s disasters. Either way, today we roll out the third of our camera-related announcements. Earlier we covered Ceva’s MM3000 cell-phone processor and the Movidius video-editing coprocessor chip. This week it’s Silicon Valley startup InVisage and its unique take on image sensors.

Silicon is a wonderful thing (so is silicone, but that’s a different discussion…). It excels as a semiconductor. It’s cheap and it’s plentiful – among the most common elements on the planet – it’s stable with temperature, and it’s easily worked by manufacturing equipment. But it’s lousy at trapping light. Electrons, yes. But photons, no.

That unfortunate property of element number 14 hasn’t stopped hundreds of manufacturers from using silicon image sensors in their cameras. Silicon chips, and specifically CMOS image sensors, are widespread, cheap, and popular. But to be honest, they’re also not very good at what they do.

That’s where InVisage comes in. The company takes a different approach to making image sensors that’s at once obvious and space-age exotic. InVisage’s new chips, which are due out late this year, promise to vastly improve the light-gathering ability of mainstream image sensors. And that, in turn, means better, thinner cameras with higher resolution and better low-light ability. We may still take bad photos of our drunk friends, but at least they’ll be good-quality bad photos.

Quantum Uncertainty Principle

The spooky space-age part of InVisage’s technology involves quantum dots. These are, um, really small dots. Of stuff that’s light-sensitive. Beyond that, the company isn’t willing to say much, except that its quantum dot material is chemically friendly to silicon and silicon-handling equipment. So although the recipe is secret, the cooking process is pretty standard.

Because the quantum dots are very small and (apparently) very easy to deposit on a wafer, the resulting image sensor has very high resolution. That’s a good thing. Resolution sells cameras, not to mention high-capacity flash cards and disk drives. Before you know it we’ll all be sending each other giga-pixel images of our thumbs, shoes, or inside pants pockets.

Someone Left the Cake Out In the Rain

The second interesting aspect of InVisage’s new device comes from putting the quantum dots where they belong: on the top of the chip. Conventional CMOS image sensors have their light-sensitive layer of silicon on the bottom of the chip, the same way typical logic circuits are etched onto the lower layers of an IC with the metal interconnect layers above. That’s fine for logic circuits; it’s worked well for decades and billions of chips. But fabricating an image sensor on the lowest layer of silicon is a bit like shooting photographs through a chain-link fence. The layers of metal interconnect obscure the image and block about 25% of the incoming light, according to InVisage.

What’s more, silicon isn’t very light-sensitive. It’s a great semiconductor but less than ideal for catching photons. InVisage moves the light-sensitive layer to the top, above the metal layers and directly exposed to the sky, so to speak. That removes the problem of metal layers blocking light but also allows InVisage to deposit its quantum-dot magic on top of the chip, where it’s easier to apply. It’s as if your retina had been moved from the back of your eye to the front.

Because most layers are still fabricated normally, InVisage says its new chips won’t be particularly expensive. Only the final, topmost layer is different, and the company controls that process with its unnamed fab partner.

An interesting side effect of this whole process is that the underlying silicon circuitry isn’t being used, at least not for light-gathering. That leaves a whole chip’s worth of silicon available for other logic purposes, such as a compression engine, interface, storage, or anything else that InVisage might conjure up. For the time being, the first chips provide just a simple interface to a microcontroller.

Pixel size and resolution are no longer a function of silicon geometry in InVisage’s device. The size of the quantum-dot pixels on the surface have nothing to do with the size of the silicon features below, so InVisage can use whatever silicon process it likes without compromising resolution, potentially lowering costs. For example, the company now uses a Paleolithic 1.1-micron (1100 nm) process. At any given silicon process, the company could potentially offer higher-resolution sensors than its competitors.

InVisage has hinted that its quantum-dot technology may have applications beyond image sensors, too. The fundamental chemistry is also applicable to displays (sort of the reverse of an image sensor) and solar panels. If that’s the case, the company has multiple opportunities to get a return on its research investment.

Portable, built-in, “opportunistic” cameras are something we don’t think about often, and that’s part of their charm. We use them to take lots of unimportant photos, knowing they’ll be blurry and grainy and that we’ll throw most of them away. If InVisage gets its way, we’ll be throwing away much better-looking photos. 

Leave a Reply

featured blogs
May 21, 2022
May is Asian American and Pacific Islander (AAPI) Heritage Month. We would like to spotlight some of our incredible AAPI-identifying employees to celebrate. We recognize the important influence that... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Building safer robots with computer vision & AI

Sponsored by Texas Instruments

Watch TI's demo to see how Jacinto™ 7 processors fuse deep learning and traditional computer vision to enable safer autonomous mobile robots.

Watch demo

featured paper

Introducing new dynamic features for exterior automotive lights with DLP® technology

Sponsored by Texas Instruments

Exterior lighting, primarily used to illuminate ground areas near the vehicle door, can now be transformed into a projection system used for both vehicle communication and unique styling features. A small lighting module that utilizes automotive-grade digital micromirror devices, such as the DLP2021-Q1 or DLP3021-Q1, can display an endless number of patterns in any color imaginable as well as communicate warnings and alerts to drivers and other vehicles.

Click to read more

featured chalk talk

Multi-Protocol Wireless in Embedded Applications

Sponsored by Mouser Electronics and STMicroelectronics

As our devices get smarter, our communication needs get more complex. In this episode of Chalk Talk, Amelia Dalton chats with Marc Hervieu from STMicroelectronics joins me to discuss the various topologies present in today’s wireless connectivity, and how the innovative architecture and flexible use of resources of the STMicroelectronics STM32WB microcontroller can help you with your wireless connectivity concerns in your next embedded design.

Click here for more information about STMicroelectronics Wireless Connectivity Solutions