feature article
Subscribe Now

Microchip Maxes Out Mighty Mites

For a silicon company, Microchip has the best brand name ever. Even your grandmother knows what a “microchip” is, even if she isn’t clear on what they do. Like Scotch tape, Xerox copiers, and Kleenex snot rags, Microchip has built-in name recognition. (Insider trivia: here in the publishing business we get letters from trademark lawyers gently reminding us not to use words like Coke, Xerox, and Kleenex as generic nouns. A weird one came from a certain agricultural firm to remind me not to call tractors “caterpillars;” does anyone really do that?)

Microchip’s biggest challenge isn’t protecting its brand name but keeping its complex product line straight. At last count, I think the company made 3.72 zillion different kinds of microcontrollers. They’ve abandoned any semblance of meaningful names or part numbers for them all; I think they just assign a serial number at birth and call it good.

The latest case in point is the new PIC16F1823 and its litter-mates, the ’1824 through ’1947. They’re all part of Microchip’s PIC16F family, obviously enough, but with… umm… some differences from all the other PIC16F chips.

The big differentiator is power consumption. These eleven new chips are all part of Microchip’s nanowatt XLP family, meaning they’re designed and fabricated in such a way that they reduce the PIC16’s already low power numbers still further.

How much lower? Microchip says these chips sip power like a Prohibitionist sips whisky. At around 100 microwatts per megahertz, the PIC16F1823 could probably run on bright sunlight. Rubbing a cat could keep one going for weeks. And that’s active current; in sleep mode these things seem like they might actually produce energy.

Microchip Gazetteer

If you’re not an expert on Microchip’s product line, welcome to the club. Briefly, the PIC16F family are all 8-bit microcontrollers with a little bit of flash memory (hence the interstitial F), a little bit on on-chip RAM, and a very little package (usually 8 to 20 pins). This is what Microchip calls its midrange 8-bit family; only Microchip could get away with calling 8-bitters “midrange.”

Another thing all PIC16F chips have in common is their unusual 14-bit instruction word. That’s not a typo; Microchip cares little for computer science orthodoxy or tradition and designs its instruction sets any way it darn well pleases. Since all code is stored in on-chip ROM anyway, it doesn’t much matter how long the instruction words are. Still, it takes a bit of getting used to. Your average PIC16F chip will have somewhere around 30–50 instructions; the exact count depends on the specific chip. Although not RISC processors in the traditional sense, their instruction sets are about as reduced as you can get.

In an interesting twist, Microchip shows how the new low-power PIC16F chips can operate at 2 MHz from just a CR2032 coin cell, a battery not renowned for its current delivery. Competing 8-bit micros either wouldn’t run from a coin cell at all, or they’ll run at very low speed. An interesting idea if you’re building very small devices.

Some of the eleven new chips come with LCD controllers. Some come with a comparatively whopping 4K to 16K words (not bytes) of flash memory for code storage. Some have analog-to-digital converters. And some even have capacitive touch-screen interfaces, all the better to sex up the LCD display. Prices are in the range of $0.69 to $1.74 for big quantities. Basic software-development tools are free, with up-level versions selling for $50 to $100 or so. Not a major outlay no matter how you look at it.  

If you can just remember the part numbers long enough to make it to your local Microchip store, you’ll probably be happy with what you get.

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Improving Chip to Chip Communication with I3C
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Toby Sinkinson from Microchip explore the benefits of I3C. They also examine how I3C helps simplify sensor networks, provides standardization for commonly performed functions, and how you can get started using Microchips I3C modules in your next design.
Feb 19, 2024
8,348 views