feature article
Subscribe Now

Demonstrating Targeted ROI

Key to Meaningful EDA Business Partnerships

Wall Street says, “Flat is the New Up!” GSA says, “Semiconductor sales for 2008 totaled $252 billion and dropped 6%, compared to 2007 sales of $268 billion.” California’s unemployment rate hit a record 11.2 percent in March 2009, allegedly the worst since the Great Depression! In our own world, EE Times reports: “The unemployment rate for all engineers jumped from 2.9 percent in the fourth quarter of 2008 to 3.9 percent in the first quarter of 2009, IEEE said.” And Nostradamus predicted the end of the world… For businesses, it’s all about increasing productivity, maximizing ROI, accelerating time to market, and reducing risk. The stakes are higher than ever in this economy.

Chip designers worldwide have told Jasper that they’re looking for something fundamentally different to help them with their technical and business problems.  We’ve coined the term “Targeted ROI” to describe the process:  customers start at the top, looking at key verification challenges – from getting their architectures unambiguously right, to putting more power in the hands of designers, to promoting design reuse,  to verifying critical functionality, to reducing process bottlenecks…even silicon debug!  We then collaborate to determine where verification solutions can be applied, and to evaluate the return on investment. Our experience is that pre-qualifying ROI for project objectives has been a key contributor to successful tool proliferation, even during a sagging economy.

To best illustrate these concepts in practice, let’s examine a few real-world challenges:

  • Architectural verification: Uncovering architecture-related problems early prevents costly re-design.  For example, it’s practically infeasible to get sufficient coverage at the design level for cache-coherency protocol checking.

  • RTL design and debug: Reduces overall engineering effort by allowing RTL designers to debug their own code, reducing the need for simulation and downstream verification effort often by a factor of 3 to 1.  

  • Proofs of critical functionality: Arbitration, control, protocols, busses and high-level block behavior are complex behaviors that simulation alone is not equipped for. Formal verification simplifies proofs of correctness, and helps to visualize and solve for many complex mode-dependent behaviors.

  • SoC integration: Connectivity issues can be time-consuming with conventional methods, and delay chip-level integration. Formal technology automates and accelerates problem formulation, analysis, and debug.

  • Design reuse: This is the mantra for productivity, and is clearly the wave of the future. We have expanded our offerings to include design services to help companies develop blocks for design re-use, accelerating deployment of those blocks in other designs, both later in time, and across geographically widespread design groups.

The examples above can be quantified for various types of Targeted ROI including time to market, risk and required resources.  In this way, our customers are able to clearly visualize the value proposition for each of these methods.

The model discussed here is specifically relevant to formal technology, encompassing design issues at every stage of development, but the notion of clearly delineating the return on investment for EDA solutions should be regarded as an essential part of the vendor / customer partnership proposition.  Demonstrating not just the practical application of tools, but the dramatic impact they can have on time to market, risk and resources, shows customers you care as much about their business success, as you do about their design.

Leave a Reply

featured blogs
May 25, 2022
Explore the world of point-of-care (POC) anatomical 3D printing and learn how our AI-enabled Simpleware software eliminates manual segmentation & landmarking. The post How Synopsys Point-of-Care 3D Printing Helps Clinicians and Patients appeared first on From Silicon To...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Melika Roshandell Today's modern electronic designs require ever more functionality and performance to meet consumer demand. These requirements make scaling traditional, flat, 2D-ICs very... ...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

Improve Efficiency in Appliance and Smart Home Power Supply

Sponsored by Mouser Electronics and Power Integrations

Long gone are the days of mechanical buttons and knobs in our home appliances. Today’s modern appliances require a variety of different modes, voltages, and motors. Keeping all of those considerations in mind, energy efficiency must reign supreme. In this episode of Chalk Talk, Amelia Dalton chats with Silvestro Fimaini from Power Integrations about how you can improve the efficiency of your appliance and smart home design power supplies with Power Integrations InnoSwitch3 with FluxLink and PowiGAN.

Click here for information about Power Integrations InnoSwitch3-TN CV/CC QR Flyback Switcher ICs