feature article
Subscribe Now

Design Tool Evolution

It’s no accident that PCB design was one of the first electronics design tasks to which computer technology was applied in an effort to automate the process. The EDA industry really had its roots in the need to handle the explosion in circuit complexity brought about by the advent of digital electronics and, in particular, the rise of the microprocessor in electronics design. Traditional manual design techniques became too cumbersome to manage when faced with the onslaught of higher pin counts, multi-line signal buses and growing numbers of board layers.

Today it’s unthinkable that any modern electronic design would be done without the use of computer-based tools to automate many of the processes across all the design disciplines. However, design automation is not a simple matter of feeding data to a software algorithm. It must tread a fine line between assisting the designer to get a task done more quickly and efficiently without hindering the desired outcome by assuming too much control.

With the recent surge of development in FPGA technology, some industry analysts believe we are at the start of a paradigm shift in electronics design. While FPGAs have been around for a while, a watershed has been reached in the price/capacity curve for these devices. They offer many of the benefits of ASICs without the high NRE costs and long development cycles. The inherent reprogrammability of these devices offer huge cuts in design time, and the tantalizing prospect of field hardware upgradeability. In short, they have the potential to change the way we can approach electronic product development, similar to the way that affordable and powerful microprocessors opened up new design possibilities decades ago.

To take full advantage of the potential offered by programmable hardware however, engineers need tools that allow them to exploit the benefits of the technology within the wider design process. For example, the large number of configurable I/O pins on high-capacity FPGA devices makes the task of managing the synchronization of pin mapping between the FPGA design and the board design a complex one. To do it manually can slow down the design cycle considerably. Indeed the benefits of working within a programmable platform can be negated by the lack of automated solutions for dealing with these devices at the PCB level.

But as we have seen with attempts to automate the placement of components, successfully automating a process that spans different design disciplines is difficult because of the lack of integration between the different design environments involved. The constraints that drive the process – in this case the limitations on pin interchangeability and the connectivity paths of the FPGA pins on the PCB – exist within different design tools.

To intelligently automate the process of optimizing the pin-out of a large FPGA for routing at the board level requires that the PCB design editor has an intimate knowledge of the physical characteristics and capabilities of the target FPGA device and any overriding constraints placed on pins by the FPGA designer. It also requires tight interaction between the FPGA and PCB design environments in order to be able to quickly iterate between FPGA and PCB-level design constraints in order to arrive at an optimal solution that balances the timing requirements within the FPGA with routability issues on the board.

Increased automation of the design process does not necessarily drive innovation in the electronics industry. What it does is raise the level of abstraction that a designer works at, empowering them to do what they do best. Design time can then be spent adding value at a creative level, rather than dealing with the complexities of implementation.

For automation to be useful, however, it must be done within an environment that encompasses all of the constraints necessary to fully specify the boundaries of the process being automated. High-capacity, low-cost programmable devices provide a vast design space that facilitates the convergence of hardware and software. In order to provide effective automation within this design space, the design system we use must unify what are currently considered separate design disciplines.

Ultimately the goal of all design automation is to maximize the effectiveness of the most valuable design asset – the creativity of the designer operating the controls. Operating within a unified design environment provides the freedom necessary to harness the full range of electronics design technology and devices available today, and supports the automation necessary to work at higher levels of abstraction, add increasing levels of intelligence to products and get the job done faster.

Leave a Reply

featured blogs
May 14, 2021
Another Friday, another week chock full of CFD, CAE, and CAD news. This week features a topic near and dear to my heart involving death of the rainbow color map for displaying simulation results.... [[ Click on the title to access the full blog on the Cadence Community site....
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

Smile, You're on My Security Camera!

Sponsored by Maxim Integrated

Advances in wireless and IoT technologies are fueling market growth for security camera systems. Outdoor security cameras need to operate for a long time on small disposable batteries. This design solution shows how a high-performance power management system can power an outdoor security camera several months longer than an ordinary solution.

Click to read more

featured chalk talk

UWB: Because Location Matters

Sponsored by Mouser Electronics and Qorvo

While technologies like GPS, WiFi, and Bluetooth all offer various types of location services, none of them are well-suited to providing accurate, indoor/outdoor, low-power, real-time, 3D location data for edge and endpoint devices. In this episode of Chalk Talk, Amelia Dalton chats with Mickael Viot from Qorvo about ultra-wideband (UWB) technology, and how it can revolutionize a wide range of applications.

Click here for more information about Qorvo Ultra-Wideband (UWB) Technology