feature article
Subscribe Now

Cheap Chip-Keeping

Actel’s $1.20 System Management Solution

System Management has historically been a topic of concern for high-end systems.  For designers of low-cost, single-board applications, “system management” often consisted of a couple of 9V battery clips, an FET, an LED, and some bailing wire.  However, the proliferation of sophisticated technology into low-end systems, combined with the increasingly urgent need for power efficiency, has moved true system management issues right down into the realm of the single-boarders.

Many single board systems today are getting into big-league system management requirements with multiple power supplies in a variety of voltages, power management, thermal monitoring and management, complex power sequencing during events like startup and shutdown, and system-level clocking.  These tasks often require analog monitoring and control capabilities such as identifying and responding to alert conditions.  System management is also tasked with logging alarms and events, closed-loop control, and diagnostics and prognostics.

Unfortunately, most system management solutions have been created with the big-BOM mentality.  $10-$30 worth of system management hardware is inconsequential in a design with two or three high-end FPGAs, a bunch of expensive memory, and assorted other exotic components and connectors.  However, if you’re in the cheap board or high-volume crowd, such expensive system management solutions send you searching for alternatives.  MCUs, system management ASSPs, and home-crafted solutions built from discrete analog parts all get pressed into action on a regular basis, but each has its shortcomings. 

If an ASSP exists for your specific application, of course it will be cost-effective, but if you deviate from the center-line of the ASSP’s intended system, you’ll run into serious issues trying to bend an inflexible product to meet your needs.  Homegrown analog solutions can stack a lot of components onto your BOM and your board, and MCUs – while highly flexible, require a lot of additional support circuitry in order to boot themselves up and manage your system.

Actel is exploiting this niche of low-cost, low-power system management with their recent announcement of system management IP and reference designs for their Fusion non-volatile, mixed-signal FPGA family.  The new reference design takes about half of the smallest Fusion device, leaving copious resources available for other tasks on your board.  The company estimates that, given the price of Fusion devices in volume, only about $1.20 worth of logic resources are required for the new Fusion-based system management implementation.

The Actel solution is based on the company’s previously-announced CoreABC soft microcontroller – a very compact MCU implemented in Fusion’s flash-based FPGA fabric.  The MCU can be run from either Fusion’s embedded SRAM or embedded flash memory.  It is capable of very fast response times (<100ns) and is designed for deterministic operation – a nice feature if you don’t want your system management tasks accidentally blocked by something like your “demo” video game or power-on sound effects.

The system management reference design (which can be downloaded for free from the Actel website) supports intelligent power management – allowing you to monitor and optimize system power on multiple supply rails – up to four voltages and three currents.  It also supports a thermal monitor to track ambient system temperature.  On the control side, the design has five gate drivers for functions such as power sequencing and fan control.  Using these basic elements, you can code up your own system management implementation very quickly, and the resulting hardware requires fewer than 1100 FPGA “tiles” (Actel’s version of the basic FPGA logic cell). 

This type of application is probably just the tip of the iceberg in terms of the things we’ll see implemented in Actel’s novel mixed-signal FPGA technology.  The low-cost integration potential of these devices is huge, and an FPGA dropped on your board for a function like system management will likely, over time, start pulling in other functions as well.  Indeed, if you implement system management with the smallest Fusion device, more than half of the resources on the FPGA are still sitting there waiting for you to do something interesting with them.  That temptation usually leads to a little glue logic here and a little data stream conversion there and pretty soon, you’re buying a bigger FPGA because you need more space to hold all the parts of your board that you’re replacing.  Of course, that’s exactly what Actel wants you to do.

Leave a Reply

featured blogs
Oct 5, 2022
The newest version of Fine Marine - Cadence's CFD software specifically designed for Marine Engineers and Naval Architects - is out now. Discover re-conceptualized wave generation, drastically expanding the range of waves and the accuracy of the modeling and advanced pos...
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Enabling Digital Transformation in Electronic Design with Cadence Cloud

Sponsored by Cadence Design Systems

With increasing design sizes, complexity of advanced nodes, and faster time to market requirements - design teams are looking for scalability, simplicity, flexibility and agility. In today’s Chalk Talk, Amelia Dalton chats with Mahesh Turaga about the details of Cadence’s end to end cloud portfolio, how you can extend your on-prem environment with the push of a button with Cadence’s new hybrid cloud and Cadence’s Cloud solutions you can help you from design creation to systems design and more.

Click here for more information about Cadence Cloud Portfolio