feature article
Subscribe Now

ArcticLink

Connectivity Without the Watts

You’re designing a new handheld device. You’ve got your processor picked, your software platform selected, your debugger dialed-in, and your battery bolted into place. Marketing has signed off on the baddest list of requirements ever – convergence has taken a turn for the terrible, and your device has to connect to ubiquitous wireless standards, seven kinds of mass storage, USB2.0, SDIO, and even PCI (Don’t ask why you’d need all of those – this is a fictional project, OK? Suspend disbelief for a moment.) The point is, you need a way to hook all that stuff into your system without burning your battery reserves just keeping everything connected.

QuickLogic’s new ArcticLink was created just for you. ArcticLink is a new device that acts as super-low-power digital duct tape, stitching together the various components of your system and providing a level of flexibility through its programmable fabric that will let marketing change its mind repeatedly without bombing your BOM too badly. The playing field in the handheld market changes almost daily, and differentiating your product is a balancing act weighing the benefits of differentiating features against the evils of increased time-to-market, BOM cost, power consumption and form factor.

ArcticLink is designed to sit in your embedded system between the application processor and a host of possible external standards like SDIO, SD, MMC, CE-ATA, PCI, IDE, NAND-flash, and USB2.0. Calling on the company’s programmable logic heritage and technology experience, a number of these standards are supported through a versatile programmable fabric, and a few are addressed via hard-wired built-in blocks.

On the hard-wired side of ArcticLink, the device has a USB controller and an integrated physical layer (PHY). The use of the integrated PHY is optional, as the USB port can be operated in either PHY or UTMI+ Low Pin Interface (ULPI) with an external PHY. The USB port supports both USB 2.0 and USB 1.1, including “high speed”, “full speed”, and “low speed” operation. It can act as the USB host or as an end-device or in dual role on-the-go (OTG) mode. OTG allows two USB devices to talk to each other without requiring a dedicated host. OTG is not a true peer-to-peer mode – more interestingly, it allows either device to act as host or peripheral, and for devices to even exchange roles if needed. ArcticLink’s USB interface can support operation at up to 480Mbps.

The next stop on our ArcticLink tour is the high-speed SDIO/SD/MMC/CE-ATA controller. With SDIO 2.0, ArcticLink can handle connections to capabilities like WiFi and Ditigal Mobile TV. There are also a number of storage standards supported, like SD, MMC, and CE-ATA, that facilitate connections to SD cards, MegaSIM, hard-disk drives, MMC cards, and managed NAND Flash – all working with peripheral interface speeds up to 52MHz.

ArcticLink also has a programmable processor interface that can be configured to support Analog Device, Freescale, Marvell, Renesas, Samsung, TI, and potentially many other processors. One of the attractive features of ArcticLink is that every interface is programmable – allowing you to juggle and react to changing requirements without jumping ship and changing chips. An internal split-bus architecture allows the application processor to create concurrent data transfers between host controllers without subsequent intervention, freeing the host processor from cycle-stealing I/O chores.

ArcticLink also has a generous helping of general-purpose programmable fabric with access to I/O connections, allowing many other capabilities to be programmed into the device. Depending on your application, the programmable fabric could implement additional storage or networking connections with drop-in pre-configured blocks, Video support functions, or custom capabilities like DRM, security, serialization, or GPIO.

QuickLogic claims that ArcticLink can replace up to five discrete components in your portable device, such as USB host/device, USB PHY, HDD controller, high-speed controller for Wi-Fi or digital mobile TV, and processor interface glue-logic. The programmable fabric uses QuickLogic’s metal-to-metal Vialink technology, which is basically a one-time programmable antifuse. Because of this non-volatile programmability, the devices do not require external configuration circuitry like a typical FPGA, and they have very good power consumption and switching speed characteristics.

The hard-wired logic creates an extremely low-power programmable fabric, as active transistors are not used for routing interconnect. The non-volatile nature of the logic fabric also makes it very easy to provide a sleep mode (called Very-Low-Power or “VLP” mode by QuickLogic) that consumes almost no power. For many applications, the device can lie dormant, consuming almost no power, until pressed into service to create an active connection to a peripheral. Dynamic power consumption is also very good with this technology, and the DMA engine built into the ArcticLink device helps offload the application processor – saving even more power.

ArcticLink is designed specifically for battery-powered portable devices, so it is available in very small BGA packages such as an 8X8mm CTBGA with 0.65mm pitch and 121 balls, or a 12X12mm TFBGA package with 0.8mm pitch and 196 balls. It is also available in “known good die” form for multi-die and system-in-package (SIP) use. Since handheld devices are often also high-volume products, and BOM cost becomes a critical consideration, QuickLogic kept the price at an easy “under $4”

Although the heart of ArcticLink might reasonably be classified as “FPGA,” the design process will typically be much simpler. The company provides a turnkey development platform with a daughtercard that plugs into Sophia Systems’s Marvell PXA3xx Sandgate III reference platform. This supports USB 2.0 OTG/Host/Device, ULPI for USB development. It also supports SD memory, SDIO (for WiFi and Digital Mobile TV), CE-ATA (X4 and X8), NAND Flash, and Bluetooth 2.0.

A wide range of IP is available for the product, implementing a variety of connectivity standards and other capabilities, and reference designs are available in a number of application areas for near-turn-key development. QuickLogic has made a strong business the past few years taking FPGA-like technology and productizing it to the next level – creating well-targeted products like ArcticLink that solve specific problems with a minimum of designer workload involved in their use and deployment. They have also taken great advantage of the specific characteristics of antifuse technology by aiming their devices at markets that can benefit from antifuse’s non-volatile, high-speed, low-power traits.

ArcticLink is scheduled to sample during Q2 2007 and to be in full volume production by Q3 2007. The “less than $4” pricing is projected for high volume orders in 2008.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Non-Magnetic Interconnects
Sponsored by Mouser Electronics and Samtec
Magnets and magnetic fields can cause big problems in medical, scientific, industrial, space, and quantum computing applications but using a non-magnetic connector can help solve these issues. In this episode of Chalk Talk, Amelia Dalton and John Riley from Samtec discuss the construction of non-magnetic connectors and how you could use non-magnetic connectors in your next design.
May 3, 2023
40,413 views