editor's blog
Subscribe Now

Costs for Sub-20nm Wafers put Another Nail in Moore’s Law’s Coffin

 

IC Insights has just published the September Update to The 2018 McClean Report, and one figure (reproduced below) puts yet another nail into the coffin for poor old Moore’s Law. Now please take care. There’s a vertical line between the 200mm wafers on the left going down to 0.13 micron lithography and 300mm wafers on the right, going down to 20nm. Per-wafer costs more than doubled going from 0.13 microns to 90nm, but the available real estate on a 300mm wafer is more than twice that on a 200mm wafer, so the cost per square nanoacre of silicon has stayed pretty constant.

(Note that the figure is labeled “revenue” but that’s from the foundry’s perspective. To the foundry customer, it’s a cost.)

But look at the jump in per-wafer costs between 28nm and 20nm (and below). There’s a sharp cost jump of slightly more than 2x, with no increase in nanoacerage. Sure, you can get more chips per wafer thanks to shrinking feature sizes, but that’s not usually what happens. The next-generation chip always has to incorporate more features. That tall bar on the far right of the graph should be drawn as a nail because it’s going into the coffin lid for Moore’s Law, which is an economic law.

As a reminder, here are the words that Moore originally used to describe the phenomenon he was seeing back in 1965:

 

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.”

 

Moore’s Law is not just about doubling. It’s about doubling component count at a minimum cost per component.

The latest McClean Report also says, “There will probably be only three foundries able to offer high-volume leading-edge production over the next five years.” Which three? TSMC, Samsung, and Intel. The cost of joining this club is so high, it’s a safe bet that no other company is going to apply. In fact, Globalfoundries just cancelled its club membership because the dues were becoming too high. (See “Monty Python, Dead Parrots, Moore’s Law, and the ITRS.”)

 

For more information about The 2018 McClean Report from IC Insights, click here.

 

 

Leave a Reply

featured blogs
Jan 24, 2020
Someone has created a song by taking Pi, assigning each number to a note, and adding harmonies. The result is strangely captivating....
Jan 24, 2020
[From the last episode: We looked at the different ways memory can be organized in different kinds of systems.] Let'€™s look at a scenario: you run a restaurant, but you'€™re short on funds to hire people. So you'€™re your own chief cook and bottle-washer. You do everyt...
Jan 23, 2020
Embedded design trends typically revolve around three main ideas: faster data rates, smaller form factors and cost-effective solutions. Those design trends drive the theme for the 2020 Embedded Tech Trends forum: The Business and Technology Forum for Critical and Intelligent ...
Jan 22, 2020
Master the design and verification of next gen transport: Part One – Overview Master the design and verification of next gen transport: Part Two – High-Level Synthesis Master the design and verification of next gen transport: Part Three – Functional Safety M...

Featured Video

Automotive Trends Driving New SoC Architectures -- Synopsys

Sponsored by Synopsys

Today’s automotive trends are driving new design requirements for automotive SoCs targeting ADAS, gateways, connected cars and infotainment. Find out why it is essential to use pre-designed, pre-verified, reusable automotive-optimized IP to meet such new requirements and accelerate design time.

Drive Your Next Design to Completion Today with DesignWare IP® for Automotive SoCs