editor's blog
Subscribe Now

Costs for Sub-20nm Wafers put Another Nail in Moore’s Law’s Coffin

 

IC Insights has just published the September Update to The 2018 McClean Report, and one figure (reproduced below) puts yet another nail into the coffin for poor old Moore’s Law. Now please take care. There’s a vertical line between the 200mm wafers on the left going down to 0.13 micron lithography and 300mm wafers on the right, going down to 20nm. Per-wafer costs more than doubled going from 0.13 microns to 90nm, but the available real estate on a 300mm wafer is more than twice that on a 200mm wafer, so the cost per square nanoacre of silicon has stayed pretty constant.

(Note that the figure is labeled “revenue” but that’s from the foundry’s perspective. To the foundry customer, it’s a cost.)

But look at the jump in per-wafer costs between 28nm and 20nm (and below). There’s a sharp cost jump of slightly more than 2x, with no increase in nanoacerage. Sure, you can get more chips per wafer thanks to shrinking feature sizes, but that’s not usually what happens. The next-generation chip always has to incorporate more features. That tall bar on the far right of the graph should be drawn as a nail because it’s going into the coffin lid for Moore’s Law, which is an economic law.

As a reminder, here are the words that Moore originally used to describe the phenomenon he was seeing back in 1965:

 

“The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.”

 

Moore’s Law is not just about doubling. It’s about doubling component count at a minimum cost per component.

The latest McClean Report also says, “There will probably be only three foundries able to offer high-volume leading-edge production over the next five years.” Which three? TSMC, Samsung, and Intel. The cost of joining this club is so high, it’s a safe bet that no other company is going to apply. In fact, Globalfoundries just cancelled its club membership because the dues were becoming too high. (See “Monty Python, Dead Parrots, Moore’s Law, and the ITRS.”)

 

For more information about The 2018 McClean Report from IC Insights, click here.

 

 

One thought on “Costs for Sub-20nm Wafers put Another Nail in Moore’s Law’s Coffin”

Leave a Reply

featured blogs
Jun 22, 2021
Have you ever been in a situation where the run has started and you realize that you needed to add two more workers, or drop a couple of them? In such cases, you wait for the run to complete, make... [[ Click on the title to access the full blog on the Cadence Community site...
Jun 21, 2021
By James Paris Last Saturday was my son's birthday and we had many things to… The post Time is money'¦so why waste it on bad data? appeared first on Design with Calibre....
Jun 17, 2021
Learn how cloud-based SoC design and functional verification systems such as ZeBu Cloud accelerate networking SoC readiness across both hardware & software. The post The Quest for the Most Advanced Networking SoC: Achieving Breakthrough Verification Efficiency with Clou...
Jun 17, 2021
In today’s blog episode, we would like to introduce our newest White Paper: “System and Component qualifications of VPX solutions, Create a novel, low-cost, easy to build, high reliability test platform for VPX modules“. Over the past year, Samtec has worked...

featured video

Kyocera Super Resolution Printer with ARC EV Vision IP

Sponsored by Synopsys

See the amazing image processing features that Kyocera’s TASKalfa 3554ci brings to their customers.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

What is a Hall-effect sensor?

Sponsored by Texas Instruments

Are you considering a Hall-effect sensor for your next design? Read this technical article to learn how Hall-effect sensors work to accurately measure position, distance and movement. In this article, you’ll gain insight into Hall-effect sensing theory, topologies, common use cases and the different types of Hall-effect sensors available today: Hall-effect switches, latches and linear sensors.

Click to read more

Featured Chalk Talk

Bluetooth Overview

Sponsored by Mouser Electronics and Silicon Labs

Bluetooth has come a long way in recent years, and adding the latest Bluetooth features to your next design is easier than ever. It’s time to ditch the cables and go wireless. In this episode of Chalk Talk, Amelia Dalton chats with Mark Beecham of Silicon labs about the latest Bluetooth capabilities including lower power, higher bandwidth, mesh, and more, as well as solutions that will make adding Bluetooth to your next design a snap.

Click here for more information about Silicon Labs EFR32BG Blue Gecko Wireless SoCs