editor's blog
Subscribe Now

Neural Networks are Finding a Place at the Adult’s Table

 

The deep learning revolution is the most interesting thing happening in the electronics industry today, said Chris Rowen during his keynote speech at the Electronic Design Process Symposium (EDPS), held last month at the Milpitas headquarters of SEMI, the industry association for the electronics supply chain. “The hype can hardly be understated,” continued Rowen. Search “deep learning” on Google and you’ll already get more than three billion hits. (Well, I got 20M for “deep learning” and 451M for “artificial intelligence,” but still, that’s a lot.) “There are 12,000 startups worldwide listed in Crunchbase,” he added. (I got 1497, again for “deep learing,” but still…) According to Rowen, 16,500 papers on deep learning and AI were published on arxiv.org in the past 12 months.

In other words, AI is hot (in case you’ve been living in a cave or an underground bomb shelter for the past few years).

Rowen is CEO of BabbleLabs, formerly BabbLabs, but the missing “e” turned out to confuse people who found they couldn’t pronounce it. BabbleLabs is a deep-learning startup. It’s devoted to applying deep learning and DNNs (deep neural networks) to speech processing.

Deep learning is a “mathematical layer cake model for learning,” explained Rowen. (I suspect he was referring to the various layers, hidden and otherwise, in the DNN model.) You take a large number of inputs and put them through a hidden system to get a desired output after a period of training. This model is very general and works for almost any kind of data, but you must have a way of gathering all of the required training data.

Currently, the biggest application for DNNs is, by far, vision systems. Training for these systems is enormously complex and running these systems consumes a lot of compute cycles. DNN-based vision systems gobble up TOPS (tera operations per second) like kids snack on candy corn during Halloween.

The fundamental question, said Rowen, is “Where do the smarts go?” In other words, where’s the best place to execute all of those tera-ops for vision systems? Is the best place close to the camera? That will give you low latency and will not overburden the network with traffic, but will degrade the ability to aggregate data from multiple cameras.

Is the best place to execute all of the tera-ops in some sort of aggregation location? At the cloud edge? In the cloud?

There’s no single answer. (That would be too easy, wouldn’t it?)

There are many critical tradeoffs to consider:

If you want to maximize system responsiveness, you make the processing local. That’s sort of obvious. You don’t want an autonomous car’s collision-avoidance DNN to be located in the cloud where a network dropout could cause a multi-car pileup; you want the processing in the car.

If you need global analysis of data from multiple cameras, such as in a surveillance system, then you want the processing in the cloud.

If you’re concerned about privacy, you don’t want raw video traversing the network. You want the processing to be local.

If you want to minimize cost, you’ll need to constrain the DNN and keep the processing local. Cloud computing is very flexible but it’s a pay-as-you-go system and the operating costs increase monotonically.

At this point, Rowen segued to the work of BabbleLabs. “Voice is vision,” he declared. “It’s the most human interface because there are five billion users (including those people listening to radio).

But there’s another aspect to AI-enhanced voice processing and recognition that indeed makes it a lot like video. “Voice recognition is essentially image recognition performed on spectrograms,” said Rowen.

Now there’s an intriguing idea.

Look at a spectrogram that plots frequency over time. It’s a 2D image, and just like any image, you can train a DNN to recognize traits buried in the spectrogram. Rowen demonstrated a BabbleLabs speech enhancer, which uses AI enhancements to strip road and wind noise from words spoken alongside a busy street in Montevideo, Uruguay. It works surprisingly well.

See for yourself (and watch to the end before making a hasty judgement):

 

The training wheels are coming off.

 

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

High Voltage Stackable Dual Phase Constant On Time Controllers - Microchip and Mouser
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Chris Romano from Microchip and Amelia Dalton discuss the what, where, and how of Microchip’s high voltage stackable dual phase constant on time controllers. They investigate the stacking capabilities of the MIC2132 controller, how these controllers compare with other solutions on the market, and how you can take advantage of these solutions in your next design.
May 22, 2023
38,603 views