editor's blog
Subscribe Now

An Opening for MEMS PDKs

iStock_000025762659_Small.jpgCoventor recently announced the latest release of MEMS+, their MEMS EDA/CAD tool, and the timing was tough because it came just after I had an article involving process design kits (PDKs). And amongst the things that the latest MEMS+ release brings is movement towards MEMS PDKs (MPDKs).

MEMS devices are, of course, notorious for evading any attempts to rope in process and design options through standardization of any kind. Efforts continue, but it remains a challenge.

This means that any MEMS design involves a collaboration between a particular fab (captive or foundry) and the design folks to come up with a physical design that meets the requirements for a particular new sensor or actuator. And what’s done for some new design may have nothing to do with what has been done in the past. Materials may change, dimensions and shapes may change, and circuits and packages may change. Everything’s negotiable.

With the latest release of MEMS+, Coventor says that they’re enabling the use of PDKs for well-established sensors – IMUs, devices built on Leti’s MnNEMS process, and piezoelectric devices. The MPDK isn’t standardized, but then again, silicon circuit PDKs have also taken a long time to move towards standardization.

So Coventor is working, initially, with one fab and EDA company at a time, starting with XFAB and Cadence. You may recall from the silicon side that the first step away from incompatible PDKs for each tool/foundry combination was for a single foundry to unify its PDKs for all tools. So initially, for example, TSMC PDKs were different for Cadence, Synopsys, and Mentor tools, and then TSMC worked to unify the format.

But the result worked only at TSMC; GlobalFoundries and other fabs would have their own formats, even if unified across tools. This is the issue that the OpenPDK project has tackled since 2010.

This is the path that MPDKs are likely to take, according to Coventor. It would be nice if the lessons of the past allowed us to bypass some of the effort replication. For instance, if XFAB gets something going, it sure would be nice to use that as the basis for someone else, layering on change and generalizing rather than starting from scratch or even turning the XFAB-only MPDK into a similar-but-incompatible someone-else-only MPDK.

You can read more about this and the other new features in MEMS+ 6.0 in Coventor’s announcement.

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Universal Verification Methodology Coverage for Bluespec RISC-V Cores

Sponsored by Synopsys

This whitepaper explains the basics of UVM functional coverage for RISC-V cores using the Google RISCV-DV open-source project, Synopsys verification solutions, and a RISC-V processor core from Bluespec.

Click to read more

featured chalk talk

Bluetooth LE Audio
Bluetooth LE Audio is a prominent component in audio innovation today. In this episode of Chalk Talk, Finn Boetius from Nordic Semiconductor and Amelia Dalton discuss the what, where, and how of Bluetooth LE audio. They take a closer look at Bluetooth LE audio profiles, the architecture of Bluetooth LE audio and how you can get started using Bluetooth LE audio in your next design.
Jan 3, 2023
40,659 views