editor's blog
Subscribe Now

Yet Another Way to Sense Magnetic Fields

Seems we have so many ways of detecting the magnetic fields around us! And now we have yet another.

Some years back we covered a small company called Crocus, a maker of MRAM technology. Their MRAM cell consisted of two magnetic layers: a “pinned” reference layer and a programmable layer. The idea was that, when the layers are aligned, the tunneling resistance through the combined layers and a thin layer of dielectric between them was different from when they were anti-aligned.

So by programming the top layer to be either aligned or anti-aligned, you could store data and read it back by measuring the tunneling current through the cell (hence the resistance).

The “pinning” comes by placing the magnetic layer just over a material that, in bulk, wasn’t magnetic, but at a nano-structural level, consisted of alternating layers of atoms magnetized in opposite directions. Because they were alternating, they neutralized each other overall, but for something sitting right atop the material, it felt only the top layer, so it seemed to be magnetized. And this stabilized the magnetic layer to align and stay there.

The free layer also had a pinning material like this that stabilized it during use, but the write circuitry was able to overcome that (with the help of some heat) to allow that layer to be flipped.

So that was how it formed a memory.

Then they figured out how to do logic with it: by making both layers programmable, they could effectively implement XOR logic. Sounded interesting, although I haven’t seen any actual product come of this idea.

Now they’ve morphed things yet one more time. In this case, they’ve removed the pinning layer from the top and they’ve taken away all the write circuitry (a huge savings). Now that top layer can simply spin away according to whichever magnetic fields it happens to be in. Its direction can still be measured by checking the tunneling current.

These three configurations are illustrated in the following conceptual, super-simplified figure.

Crocus_cell_dwg.png 

In the memory application, the current had two values – one for 1, the other for 0. In the magnetic field detector implementation, the current can take on a continuous range of values between the 1 and 0 values.

The benefits they tout include low-power sensing, linearity good enough not to need compensation, and the ability to operate as high as 250 °C.

This actually isn’t a new thing – they’ve apparently been quietly selling this stuff for a couple years, and just completed a new round of funding. But it seemed worth talking about as an example of technology being repurposed for new markets.

You can find out more on their site

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Rail Data Connectivity

Sponsored by Mouser Electronics and TE Connectivity

The rail industry is undergoing a technological revolution right now, and Ethernet connectivity is at the heart of it. But, finding the right interconnect solutions for high-reliability applications such as rail isn’t easy. In this episode of Chalk Talk, Amelia Dalton chats with Egbert Stellinga from TE Connectivity about TE’s portfolio of interconnect solutions for rail and other reliability-critical applications.

Click here for more information about TE Connectivity EN50155 Managed Ethernet Switches