editor's blog
Subscribe Now

Yet Another Way to Sense Magnetic Fields

Seems we have so many ways of detecting the magnetic fields around us! And now we have yet another.

Some years back we covered a small company called Crocus, a maker of MRAM technology. Their MRAM cell consisted of two magnetic layers: a “pinned” reference layer and a programmable layer. The idea was that, when the layers are aligned, the tunneling resistance through the combined layers and a thin layer of dielectric between them was different from when they were anti-aligned.

So by programming the top layer to be either aligned or anti-aligned, you could store data and read it back by measuring the tunneling current through the cell (hence the resistance).

The “pinning” comes by placing the magnetic layer just over a material that, in bulk, wasn’t magnetic, but at a nano-structural level, consisted of alternating layers of atoms magnetized in opposite directions. Because they were alternating, they neutralized each other overall, but for something sitting right atop the material, it felt only the top layer, so it seemed to be magnetized. And this stabilized the magnetic layer to align and stay there.

The free layer also had a pinning material like this that stabilized it during use, but the write circuitry was able to overcome that (with the help of some heat) to allow that layer to be flipped.

So that was how it formed a memory.

Then they figured out how to do logic with it: by making both layers programmable, they could effectively implement XOR logic. Sounded interesting, although I haven’t seen any actual product come of this idea.

Now they’ve morphed things yet one more time. In this case, they’ve removed the pinning layer from the top and they’ve taken away all the write circuitry (a huge savings). Now that top layer can simply spin away according to whichever magnetic fields it happens to be in. Its direction can still be measured by checking the tunneling current.

These three configurations are illustrated in the following conceptual, super-simplified figure.

Crocus_cell_dwg.png 

In the memory application, the current had two values – one for 1, the other for 0. In the magnetic field detector implementation, the current can take on a continuous range of values between the 1 and 0 values.

The benefits they tout include low-power sensing, linearity good enough not to need compensation, and the ability to operate as high as 250 °C.

This actually isn’t a new thing – they’ve apparently been quietly selling this stuff for a couple years, and just completed a new round of funding. But it seemed worth talking about as an example of technology being repurposed for new markets.

You can find out more on their site

Leave a Reply

featured blogs
Sep 22, 2021
'μWaveRiders' 是ä¸ç³»åˆ—æ—¨å¨æŽ¢è®¨ Cadence AWR RF 产品的博客,按æˆæ›´æ–°ï¼Œå…¶å†…容涵盖 Cadence AWR Design Environment æ新的核心功能,专题视频ï¼...
Sep 22, 2021
3753 Cruithne is a Q-type, Aten asteroid in orbit around the Sun in 1:1 orbital resonance with the Earth, thereby making it a co-orbital object....
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Digital Design Technology Symposium

Sponsored by Synopsys

Are you an SoC designer or manager facing new design challenges driven by rapidly growing and emerging vertical segments for HPC, 5G, mobile, automotive and AI applications?

Join us at the Digital Design Technology Symposium.

featured paper

Designing device power-supply ICs in an application-specific automated test equipment system

Sponsored by Maxim Integrated (now part of Analog Devices)

This application note provides guidelines for selecting the device power-supply (DPS) IC in an automated test equipment (ATE) system. These considerations will help you select the right DPS IC for your specific ATE system. It also explains the best system level architecture to tackle the output current and thermal requirements of the ATE system.

Click to read more

featured chalk talk

Using the Graphical PMSM FOC Component in Harmony3

Sponsored by Mouser Electronics and Microchip

Developing embedded software, and particularly configuring your embedded system can be a major pain for development engineers. Getting all the drivers, middleware, and libraries you need set up and in the right place and working is a constant source of frustration. In this episode of Chak Talk, Amelia Dalton chats with Brett Novak of Microchip about Microchip’s MPLAB Harmony 3, with the MPLAB Harmony Configurator - an embedded development framework with a drag-and-drop GUI that makes configuration a snap.

Click here for more information about Microchip Technology MPLAB® X Integrated Development Environment (IDE)