editor's blog
Subscribe Now

Nanoimprint for Photonics

EVG_SmartNIL_Full_Area_UV_Nanoimprint_Lithography_Wafer_red.jpgWe’ve talked about photonics before and we’ve talked about nanoimprint lithography (NIL) before. Creating silicon photonics features requires masking, which requires lithography, and so it might not be a surprise to hear that all different kinds of lithography techniques – including NIL – were being explored for photonics.

Which is how I went into a discussion with EV Group at Semicon West. But that’s not what the story is at all. This is not about patterning resists to pattern silicon for silicon photonics – this is about building photonics structures directly out of… various other non-silicon materials, using imprint as a direct patterning approach.

I can’t help but think about NIL as if it were printing vinyl albums. Which are black. (Except a few novelty ones.) Even if printing resist, any resist I remember seeing way back in my fab days was distinctly not transparent. So picturing these materials as conduits for light is something my brain, well, resists.

But it’s apparently true: many of the materials available to be imprinted happen to be transparent (at suitable wavelengths). So you can build the conduits right on the surface of the wafer – no further etching required.

EVG notes that there are a number of high-volume apps for NIL these days:

  • Polarizers
  • Patterns for extracting more energy out of LEDs
  • Biotech (they can’t say specifically what)
  • And… one more big one coming that they also couldn’t talk specifically about.

Meanwhile, they’ve also teamed with Leti in a so-called INSPIRE program to further develop techniques and applications for NIL. You can find more about this in their announcement.

 

(Image courtesy EV Group)

Leave a Reply

featured blogs
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: DesignWare® Foundation IP

Sponsored by Synopsys

Join Prasad Saggurti for an update on Synopsys’ DesignWare Foundation IP, including the world’s fastest TCAMs, widest-voltage GPIOs, I2C & I3C IOs, and LVDS IOs. Synopsys Foundation IP is silicon-proven in 7nm in more than 500,000 customer wafers, and 5nm is in development.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Improving Battery-Life with Ultra Low-Power Processors

Sponsored by Mouser Electronics and NXP

Battery life is critical in today’s mobile device designs, and designing-in ever-larger batteries causes all sorts of awkward compromises. The best strategy is to lower power consumption, and the processor is a great place to start. In this episode of Chalk Talk, Amelia Dalton chats with Nik Jedrzejewski of NXP about the new NXP 7ULP, and how it will help you cut power consumption in your mobile design.

Click here for more information about NXP Semiconductors i.MX 8M Mini Applications Processors