editor's blog
Subscribe Now

Nanoimprint for Photonics

EVG_SmartNIL_Full_Area_UV_Nanoimprint_Lithography_Wafer_red.jpgWe’ve talked about photonics before and we’ve talked about nanoimprint lithography (NIL) before. Creating silicon photonics features requires masking, which requires lithography, and so it might not be a surprise to hear that all different kinds of lithography techniques – including NIL – were being explored for photonics.

Which is how I went into a discussion with EV Group at Semicon West. But that’s not what the story is at all. This is not about patterning resists to pattern silicon for silicon photonics – this is about building photonics structures directly out of… various other non-silicon materials, using imprint as a direct patterning approach.

I can’t help but think about NIL as if it were printing vinyl albums. Which are black. (Except a few novelty ones.) Even if printing resist, any resist I remember seeing way back in my fab days was distinctly not transparent. So picturing these materials as conduits for light is something my brain, well, resists.

But it’s apparently true: many of the materials available to be imprinted happen to be transparent (at suitable wavelengths). So you can build the conduits right on the surface of the wafer – no further etching required.

EVG notes that there are a number of high-volume apps for NIL these days:

  • Polarizers
  • Patterns for extracting more energy out of LEDs
  • Biotech (they can’t say specifically what)
  • And… one more big one coming that they also couldn’t talk specifically about.

Meanwhile, they’ve also teamed with Leti in a so-called INSPIRE program to further develop techniques and applications for NIL. You can find more about this in their announcement.

 

(Image courtesy EV Group)

Leave a Reply

featured blogs
Dec 2, 2022
A picture tells more than a thousand words, so here are some pictures of CadenceLIVE Europe 2023 Academic and Entrepreneur Tracks to tell a story. After two years of absence, finally the Academic Dinner could take place with professors from Lead Institutions and Program Chair...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

56 Gbps PAM4 Performance in FPGA Applications

Sponsored by Mouser Electronics and Samtec

If you are working on an FPGA design, the choice of a connector solution can be a crucial element in your system design. Your FPGA connector solution needs to support the highest of speeds, small form factors, and emerging architectures. In this episode of Chalk Talk, Amelia Dalton joins Matthew Burns to chat about you can get 56 Gbps PAM4 performance in your next FPGA application. We take a closer look at Samtec’s AcceleRate® HD High-Density Arrays, the details of Samtec’s Flyover Technology, and why Samtec’s complete portfolio of high-performance interconnects are a perfect fit for 56 Gbps PAM4 FPGA Applications.

Click here for more information about Samtec AcceleRate® Slim Body Direct Attach Cable Assembly