editor's blog
Subscribe Now

Nanoimprint for Photonics

EVG_SmartNIL_Full_Area_UV_Nanoimprint_Lithography_Wafer_red.jpgWe’ve talked about photonics before and we’ve talked about nanoimprint lithography (NIL) before. Creating silicon photonics features requires masking, which requires lithography, and so it might not be a surprise to hear that all different kinds of lithography techniques – including NIL – were being explored for photonics.

Which is how I went into a discussion with EV Group at Semicon West. But that’s not what the story is at all. This is not about patterning resists to pattern silicon for silicon photonics – this is about building photonics structures directly out of… various other non-silicon materials, using imprint as a direct patterning approach.

I can’t help but think about NIL as if it were printing vinyl albums. Which are black. (Except a few novelty ones.) Even if printing resist, any resist I remember seeing way back in my fab days was distinctly not transparent. So picturing these materials as conduits for light is something my brain, well, resists.

But it’s apparently true: many of the materials available to be imprinted happen to be transparent (at suitable wavelengths). So you can build the conduits right on the surface of the wafer – no further etching required.

EVG notes that there are a number of high-volume apps for NIL these days:

  • Polarizers
  • Patterns for extracting more energy out of LEDs
  • Biotech (they can’t say specifically what)
  • And… one more big one coming that they also couldn’t talk specifically about.

Meanwhile, they’ve also teamed with Leti in a so-called INSPIRE program to further develop techniques and applications for NIL. You can find more about this in their announcement.

 

(Image courtesy EV Group)

Leave a Reply

featured blogs
Sep 22, 2021
'μWaveRiders' 是ä¸ç³»åˆ—æ—¨å¨æŽ¢è®¨ Cadence AWR RF 产品的博客,按æˆæ›´æ–°ï¼Œå…¶å†…容涵盖 Cadence AWR Design Environment æ新的核心功能,专题视频ï¼...
Sep 22, 2021
3753 Cruithne is a Q-type, Aten asteroid in orbit around the Sun in 1:1 orbital resonance with the Earth, thereby making it a co-orbital object....
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Enter the InnovateFPGA Design Contest to Solve Real-World Sustainability Problems

Sponsored by Intel

The Global Environment Facility (GEF) Small Grants Programme, implemented by the U.N. Development Program, is collaborating with the #InnovateFPGA contest to support 7 funded projects that are looking for technical solutions in biodiversity, sustainable agriculture, and marine conservation. Contestants have access to the Intel® Cyclone® V SoC FPGA in the Cloud Connectivity Kit, Analog Devices plug-in boards, and Microsoft Azure IoT.

Learn more about the contest and enter here by September 30, 2021

featured paper

IPU-Based Cloud Infrastructure: The Fulcrum for Digital Business

Sponsored by Intel

As Cloud Service Providers consider their investment strategies and technology plans for the future, learn how IPUs can offer a path to accelerate and financially optimize cloud services.

Click to read more

featured chalk talk

Maxim's Ultra-High CMTI Isolated Gate Drivers

Sponsored by Mouser Electronics and Maxim Integrated (now part of Analog Devices)

Recent advances in wide-bandgap materials such as silicon carbide and gallium nitride are transforming gate driver technology, bringing higher power efficiency and a host of other follow-on benefits. In this episode of Chalk Talk, Amelia Dalton chats with Suravi Karmacharya of Maxim Integrated about Maxim’s MAX22700-MAX22702 family of single-channel isolated gate drivers.

Click here for more information about Maxim Integrated MAX22700–MAX22702 Isolated Gate Drivers