editor's blog
Subscribe Now

Nanoimprint for Photonics

EVG_SmartNIL_Full_Area_UV_Nanoimprint_Lithography_Wafer_red.jpgWe’ve talked about photonics before and we’ve talked about nanoimprint lithography (NIL) before. Creating silicon photonics features requires masking, which requires lithography, and so it might not be a surprise to hear that all different kinds of lithography techniques – including NIL – were being explored for photonics.

Which is how I went into a discussion with EV Group at Semicon West. But that’s not what the story is at all. This is not about patterning resists to pattern silicon for silicon photonics – this is about building photonics structures directly out of… various other non-silicon materials, using imprint as a direct patterning approach.

I can’t help but think about NIL as if it were printing vinyl albums. Which are black. (Except a few novelty ones.) Even if printing resist, any resist I remember seeing way back in my fab days was distinctly not transparent. So picturing these materials as conduits for light is something my brain, well, resists.

But it’s apparently true: many of the materials available to be imprinted happen to be transparent (at suitable wavelengths). So you can build the conduits right on the surface of the wafer – no further etching required.

EVG notes that there are a number of high-volume apps for NIL these days:

  • Polarizers
  • Patterns for extracting more energy out of LEDs
  • Biotech (they can’t say specifically what)
  • And… one more big one coming that they also couldn’t talk specifically about.

Meanwhile, they’ve also teamed with Leti in a so-called INSPIRE program to further develop techniques and applications for NIL. You can find more about this in their announcement.

 

(Image courtesy EV Group)

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

Improve SoC-Level Verification Efficiency by Up to 10X

Sponsored by Cadence Design Systems

Chip-level testbench creation, multi-IP and CPU traffic generation, performance bottleneck identification, and data and cache-coherency verification all lack automation. The effort required to complete these tasks is error prone and time consuming. Discover how the Cadence® System VIP tool suite works seamlessly with its simulation, emulation, and prototyping engines to automate chip-level verification and improve efficiency by ten times over existing manual processes.

Click here for more information about System VIP

featured paper

Learn how designing small is easier than you think

Sponsored by Texas Instruments

Designing with small-package ICs is easier than you think. Find out how our collection of industry's smallest signal-chain products can help you optimize board space without sacrificing features, cost, simplicity, or reliability in your system.

Click here to download the whitepaper

Featured Chalk Talk

Introducing Google Coral

Sponsored by Mouser Electronics and Google

AI inference at the edge is exploding right now. Numerous designs that can’t use cloud processing for AI tasks need high-performance, low-power AI acceleration right in their embedded designs. Wouldn’t it be cool if those designs could have their own little Google TPU? In this episode of Chalk Talk, Amelia Dalton chats with James McKurkin of Google about the Google Coral edge TPU.

More information about Coral System on Module