editor's blog
Subscribe Now

Blue-Collar Sensors from Microchip

In our coverage of sensors, we’ve seen increasing levels of abstraction as microcontrollers in or near the sensors handle the hard labor of extracting high-level information from low-level info. These are the hipster sensors that go on the wearables that go on your person for a month and then go on your nightstand.

Today, however, we’re going to get grittier and more obscure. Some sensors have more of a blue-collar feel to them, and I discussed two examples with Microchip back at Sensors Expo.

The first is a current sensor. Specifically, a “high-side” current sensor, meaning it goes in series with the upper power supply rail (not the ground rail). It can report current, voltage, or power. The unusual thing about this unit (the PAC1921) is that it provides both analog and digital outputs. “Why?” you may ask…

So much has moved to digital because, well, data can be provided in an orderly fashion, queried as needed by inquiring processors. FIFOs and advanced processing are available in the digital realm, and if you’re maintaining a history of power supply performance, digital is a great way to keep that tally.

Digital does, however, introduce latency. If you’re sensing the current and using the result in your power management algorithm, a bit of latency means that… oh, say, the voltage gets too high and you measure that and then digitize it and then put it someplace for a processor to find and then – oh, now look at that mess! Analog works much more quickly in a control loop. So here you get both.

Current_sensor_figure.jpg 

(Image courtesy Microchip)

Then, off to a completely different unit: a temperature sensor. Well, actually, not the sensor itself, but the wherewithal to calculate temperature from a thermocouple.

Apparently our penchant for integration and abstraction has lagged in this corner of the world. While thermocouples can generate a voltage based on the temperature, calculating the precise temperature based on that voltage has been a discrete affair (not to be confused with a discreet affair). It requires lots of analog circuitry to measure the microvolt signal (typically done at a “cold” junction, away from the actual heat), digitize it, and then perform the math.

That math reflects the fact that thermocouples have a non-linear relationship between their output voltage and the temperature. And the details vary by thermocouple type. So this calculation is typically done in an external microcontroller.

This would make the new MCP9600 the first device fully integrated with all the bits needed to convert volts (from the thermocouple) into degrees Celsius. They refer to it as a thermocouple-conditioning IC, and it works for a wide range of thermocouple types (K, J, T, N, S, E, B and R for those of you keeping score).

 Thermocouple_figure.jpg

(Image courtesy Microchip)

You can find more in their respective announcements: current sensor here, thermocouple here. We now return you to your white-collar sensors, which appear to have moved on from latte to white wine…

Leave a Reply

featured blogs
Apr 13, 2021
We explain the NHTSA's latest automotive cybersecurity best practices, including guidelines to protect automotive ECUs and connected vehicle technologies. The post NHTSA Shares Best Practices for Improving Autmotive Cybersecurity appeared first on From Silicon To Software....
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

Featured Chalk Talk

Cloud Computing for Electronic Design (Are We There Yet?)

Sponsored by Cadence Design Systems

When your project is at crunch time, a shortage of server capacity can bring your schedule to a crawl. But, the rest of the year, having a bunch of extra servers sitting around idle can be extremely expensive. Cloud-based EDA lets you have exactly the compute resources you need, when you need them. In this episode of Chalk Talk, Amelia Dalton chats with Craig Johnson of Cadence Design Systems about Cadence’s cloud-based EDA solutions.

More information about the Cadence Cloud Portfolio