editor's blog
Subscribe Now

CogniVue Drives at Mobileye

iStock_000068339495_Small.jpgCogniVue recently made a roadmap announcement that puts Mobileye on notice: CogniVue is targeting Mobileye’s home turf.

We looked at Mobileye a couple years ago; their space is Advanced Driver Assistance Systems (ADAS). From an image/video processing standpoint, they apparently own 80% of this market. According to CogniVue, they’ve done that by getting in early with a proprietary architecture and refining and optimizing over time to improve their ability to classify and identify objects in view. And they’ve been able to charge a premium as a result.

What’s changing is the ability of convolutional neural networks (CNNs) to move this capability out of the realm of custom algorithms and code, opening it up to a host of newcomers. And, frankly, making it harder for players to differentiate themselves.

According to CogniVue, today’s CNNs are built on GPUs and are huge. And those GPUs don’t have the kind of low-power profile that would be needed for mainstream automotive adoption. CogniVue’s announcement debuts their new Opus APEX core, which they say can support CNNs in a manner that can translate to practical commercial use in ADAS designs. The Opus power/performance ratio has improved by 5-10 times as compared to their previous G2 APEX core.

You can find more commentary in their announcement.

 

Updates: Regarding the capacity for Opus to implement CNNs, the original version stated, based on CogniVue statements, that more work was needed to establish Opus supports CNNs well. CogniVue has since said that they’ve demonstrated this through “proprietary benchmarks at lead Tier 1s,” so I removed the qualifier. Also, it turns out that the APEX core in a Freescale device (referenced in the original version) isn’t Opus, but rather the earlier G2 version – the mention in the press release (which didn’t specify G2 or Opus) was intended not as testament to Opus specifically, but to convey confidence in Opus based on experience with G2. The Freescale reference has therefore been removed, since it doesn’t apply to the core being discussed.

Leave a Reply

featured blogs
Aug 13, 2020
My first computer put out a crazy 33 MHz of processing power from the 486 CPU. That was on “Turbo Mode” of course, and when it was turned off we were left with 16 MHz. Insert frowny face. Maybe you are too young to remember a turbo button, but if you aren’t ...
Aug 13, 2020
Hi readers! Welcome to Veri-Fire, a blog series that helps you deep dive into Virtuoso® ADE Verifier and learn about its various whys and hows. In this series, Walter Hartong, a Product... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Aug 13, 2020
Imagine ambling into a small town, heading to the nearest public house to blow the froth off a few cold beers, and hearing your AI whisper '€œ...'€...
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Video

Are You Listening?

Sponsored by Mouser Electronics

Inspiration doesn’t stick to a schedule. Luckily, creativity is a natural stimulant. Let Mouser Electronics help you on your way.

More information

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters