editor's blog
Subscribe Now

Benchmarks for IoT Edge Nodes

If you’ve been in the market for microprocessor benchmarks, then you’re probably familiar with EEMBC. Their most recent benchmark suite, ULPbench, was designed to compare microcontrollers (MCUs) so that purchasers could get a neutral, apples-to-apples view of which MCUs consume the least energy.

That’s all fine and good, but it also establishes a path towards something similar but more inclusive: Internet-of-Things (IoT) edge nodes. These are the units way at the edge of the IoT that fundamentally do three things: measure something, do some minor computation, and then send the data… somewhere. Usually wirelessly.

Something’s got to power these devices, and they may be far-flung, even inaccessible. It’s expensive, although possible, to change batteries in nodes scattered throughout a large farm. It’s impossible to change the battery on a sensor miles down a borehole (without bringing it up, of course). So energy consumption is of critical importance on these small systems.

These systems tend to have four main components: the sensor, an MCU, a radio subsystem, and power management. ULPbench provides an approach that might be useful in this context, except that its focus is solely on the MCU, and as you can see below, the radio is another major consumer of energy.

 IoT_burst_profile.png

(Image courtesy EEMBC)

Additionally, the work profiles used to characterize the energy consumption for an edge node may differ from those used to characterize MCUs more generally.

So EEMBC has embarked on a program to define a benchmark suite for IoT edge nodes. This would entail conjuring up appropriate work profiles for these kinds of devices, some of which might leverage ULPbench, some not.

They refer to these edge nodes as being “sleepy” – they do a bunch of work and then go to sleep, waking at some time in the future to repeat the process. That wake/sleep pattern figures into the overall rate of energy consumption. But you may notice mentions of the fact that, if the systems sleep for too long, then this benchmark may not apply – which might be confusing.

Here’s what’s going on there. The issue isn’t really how long the system sleeps; it’s just that such long-sleep behavior may be more typical of edge nodes that leverage energy harvesting for power. And it’s the energy harvesting, not the sleep time, that’s the problem. So a battery-powered unit with no energy harvesting that sleeps a long time would still be covered by this new benchmark.

“What’s the problem with energy harvesting?” you might ask. Well, they’re measuring how much energy the unit needs by measuring the inflow of current from the power source. That doesn’t work for a unit that powers itself through harvesting. There may well be a good methodology for handling such nodes, but they’re in the vast minority these days, so it’s not the dominant problem. EEMBC is focused on the much more common case of battery-powered nodes.

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 16, 2021
I was quite happy with the static platform I'd created for my pseudo robot heads, and then some mad impetuous fool suggested servos. Oh no! Here we go again......
Sep 16, 2021
CadenceLIVE, Cadence's annual user conference, has been a great platform for Cadence technology users, developers, and industry experts to connect, share ideas and best practices solve design... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

ARC® Processor Virtual Summit 2021

Sponsored by Synopsys

Designing an embedded SoC? Attend the ARC Processor Virtual Summit on Sept 21-22 to get in-depth information from industry leaders on the latest ARC processor IP and related hardware and software technologies that enable you to achieve differentiation in your chip or system design.

Click to read more

featured paper

Designing an Accurate, Multifunction Lithium-Ion Battery-Testing Solution

Sponsored by Texas Instruments

This paper highlights the benefits of a discrete solution over an integrated solution in order to meet current and future battery testing challenges. It also includes an example of a highly flexible battery testing design.

Click to read more

featured chalk talk

Thermocouple Temperature Sensor Solution

Sponsored by Mouser Electronics and Microchip

When it comes to temperature monitoring and management, industrial applications can be extremely demanding. With temperatures that can range from 270 to 3000 C, consumer-grade temperature probes just don’t cut it. In this episode of Chalk Talk, Amelia Dalton chats with Ezana Haile of Microchip technology about using thermocouples for temperature monitoring in industrial applications.

More information about Microchip Technology MCP9600, MCP96L00, & MCP96RL00 Thermocouple ICs