editor's blog
Subscribe Now

Benchmarks for IoT Edge Nodes

If you’ve been in the market for microprocessor benchmarks, then you’re probably familiar with EEMBC. Their most recent benchmark suite, ULPbench, was designed to compare microcontrollers (MCUs) so that purchasers could get a neutral, apples-to-apples view of which MCUs consume the least energy.

That’s all fine and good, but it also establishes a path towards something similar but more inclusive: Internet-of-Things (IoT) edge nodes. These are the units way at the edge of the IoT that fundamentally do three things: measure something, do some minor computation, and then send the data… somewhere. Usually wirelessly.

Something’s got to power these devices, and they may be far-flung, even inaccessible. It’s expensive, although possible, to change batteries in nodes scattered throughout a large farm. It’s impossible to change the battery on a sensor miles down a borehole (without bringing it up, of course). So energy consumption is of critical importance on these small systems.

These systems tend to have four main components: the sensor, an MCU, a radio subsystem, and power management. ULPbench provides an approach that might be useful in this context, except that its focus is solely on the MCU, and as you can see below, the radio is another major consumer of energy.

 IoT_burst_profile.png

(Image courtesy EEMBC)

Additionally, the work profiles used to characterize the energy consumption for an edge node may differ from those used to characterize MCUs more generally.

So EEMBC has embarked on a program to define a benchmark suite for IoT edge nodes. This would entail conjuring up appropriate work profiles for these kinds of devices, some of which might leverage ULPbench, some not.

They refer to these edge nodes as being “sleepy” – they do a bunch of work and then go to sleep, waking at some time in the future to repeat the process. That wake/sleep pattern figures into the overall rate of energy consumption. But you may notice mentions of the fact that, if the systems sleep for too long, then this benchmark may not apply – which might be confusing.

Here’s what’s going on there. The issue isn’t really how long the system sleeps; it’s just that such long-sleep behavior may be more typical of edge nodes that leverage energy harvesting for power. And it’s the energy harvesting, not the sleep time, that’s the problem. So a battery-powered unit with no energy harvesting that sleeps a long time would still be covered by this new benchmark.

“What’s the problem with energy harvesting?” you might ask. Well, they’re measuring how much energy the unit needs by measuring the inflow of current from the power source. That doesn’t work for a unit that powers itself through harvesting. There may well be a good methodology for handling such nodes, but they’re in the vast minority these days, so it’s not the dominant problem. EEMBC is focused on the much more common case of battery-powered nodes.

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Gesture Detection for Automotive In-Cabin Applications

Sponsored by Texas Instruments

See how using 60GHz radar for automotive in-cabin gesture is ideal due to its small size and ability to sense through various materials. Applications using gesture control include changing radio stations, answering phone calls, opening windows, and more.

Click to learn more about gesture detection using 60GHz mmWave radar sensors

featured paper

Detect. Sense. Control: Simplify building automation designs with MSP430™ MCU-based solutions

Sponsored by Texas Instruments

Building automation systems are critical not only to security, but worker comfort. Whether you need to detect, sense or control applications within your environment, the right MCU can make it easy. Using MSP430 MCUS with integrated analog, you can easily develop common building automation applications including motion detectors, touch keypads and e-locks, as well as video security cameras. Read more to see how you can enhance your building automation design.

Click to read more

featured chalk talk

Why Measure C02 Indoor Air Quality?

Sponsored by Mouser Electronics and Sensirion

The amount of carbon dioxide in the air can be a key indicator in indoor air quality and improving our indoor air quality can have a slew of benefits including increased energy efficiency, increased cognitive performance, and also the reduction of the risk for viral infection. In this episode of Chalk Talk, Amelia Dalton chats with Bernd Zimmermann from Sensirion about the reasons for measuring carbon dioxide in our indoor spaces, what this kind of measurement looks like, and why Sensirion’s new SCD4 carbon dioxide sensors are breaking new ground in this arena. (edited)

Click here for more information about Sensirion SCD4x Miniaturized CO2 Sensors