editor's blog
Subscribe Now

Faster NoC Tuning

In a sleepy little town of 4 or 5 houses, you can be pretty informal about how mail arrives at its destinations. People can come pick it up at the post office, or the postmaster can drop it off on the way home, or whatever works. But once you get too many houses, you have to get organized: create routes and schedules and hire delivery folks to handle deliveries in a more structured manner.

That’s what’s happened with SoCs: the ad-hoc interconnect schemes of yore are giving way to networks-on-chip (NoCs) so that the complex communication interplay between blocks can be carefully designed, managed, and tuned.

Which is good, except that a NoC is a complex animal, and, traditionally, it goes into the chip layout mix as part of the whole – it’s just another (complex) bit of IP. Layout affects performance, so tuning and closing the timing of a NoC in the middle of the rest of the layout would presumably be a difficult proposition. It also adds a significant burden to the EDA tools trying to manage the whole thing.

So Arteris has a proposal: segregate the NoC that from the rest of the circuit and optimize it independently. This relies on a layout that provides channels between IP instances where the NoC lines and circuits will be placed.

They describe a three-step process starting after initial layout. First, the NoC IP is isolated so that timing and routing can be optimized. In the second part, pipeline stages are automatically added (as they point out, you’ll never get from point A to point B across a 28-nm chip in one clock cycle). Finally, timing is closed using physical synthesis – which they claim can provide single-pass success.

FlexNoC_drawing.png 

This lets you optimize the NoC unburdened by the rest of the SoC, and it lets the EDA tools handle the rest of the SoC unburdened by the NoC. Arteris says that this divide-and-conquer approach gets you to tape-out faster than trying to do the whole thing at once.

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 5, 2024
I just discovered why my wife sees our green watering can as being blue (and why she says I see our blue watering can as being green)...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

Advances in Solar Energy and Battery Technology
Sponsored by Mouser Electronics and onsemi
Passive components will play an important part in the next generation of solar and energy storage systems. In this episode of Chalk Talk, Amelia Dalton, Prasad Paruchuri from onsemi, Walter Fusto from Würth Elektronik explore trends, challenges and solutions in solar and energy storage systems. They also examine EMI considerations for energy storage systems, the benefits that battery management systems bring to these kinds of designs and how passive components can make all the difference in solar and energy storage systems.
Aug 13, 2024
13,196 views