editor's blog
Subscribe Now

Sensor Hub Power Drops Again

ArcticLink_3_S2_PR_Image_FINAL_cr.jpgQuickLogic is back, pushing power numbers down again. They’re now touting what they say is the lowest-power sensor hub, at 75 µW, with their ArcticLink 3 S2 LP.

You may recall that QuickLogic’s ArcticLink 3 is a “custom PLD,” if you like. It’s got an internal programmable fabric, plus hardened logic and a couple of processors. The solution, much of which comes pre-canned, is a combination of logic and state machine and multipliers and microcode, with a modicum of programmability. It’s a carefully crafted approach, as we discussed a while back.

QuickLogic has come back a couple of times with power reductions on their original device. I asked what changed in the S2 LP vs. the prior S2: process and design tweaks. There’s no functional difference. I asked if there was ever a reason to use the S2 instead of the S2 LP; their answer was, “Not really.” So it seems to be a story of “lower power for free.” How often do you get that?

Competitors will question how much processing this device will allow – it’s certain that there are other solutions – likely microcontroller-based – that could, with larger memories, handle more sophisticated algorithms – at the cost of higher power. PNI can probably squeeze more algorithm-per-microwatt than a generic microcontroller since their solutions are largely fixed. (Programmability costs…) But they’re still higher than 75 µW.

But much of that is conjecture and gut-feel on my part. Where the breaking point is for each of these architectures… well, I don’t know if anyone has a real answer to that. Almost makes you wish for some way of figuring out what can go into which device for how much power.

You can read more in QuickLogic’s announcement.

 

(Image courtesy QuickLogic)

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Texas Instruments: Pushing Power Further

Sponsored by Texas Instruments

Power is all around us. Every connection, every invention begins with power. Watch this short video to see how we are pushing the limits of power management.

Explore our power density portfolio

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

SensorTile. Box - A Ready to Go IoT Node

Sponsored by Mouser Electronics and ST Microelectronics

In the highly competitive IoT market, getting your idea to the prototype stage as quickly as possible is critical. But, designing non-differentiated things like connectivity, power supplies, sensor interfaces, and so forth soaks up valuable design time. In this episode of Chalk Talk, Amelia Dalton chats with Thiago Reis from STMicroelectronics about SensorTile Box - a ready-to-go IoT node development kit that’s just waiting for your great IoT idea.

Click here for more information about STMicroelectronics STEVAL-MKSBOX1V1 SensorTile.box Development Kit