editor's blog
Subscribe Now

Sensor Hub Power Drops Again

ArcticLink_3_S2_PR_Image_FINAL_cr.jpgQuickLogic is back, pushing power numbers down again. They’re now touting what they say is the lowest-power sensor hub, at 75 µW, with their ArcticLink 3 S2 LP.

You may recall that QuickLogic’s ArcticLink 3 is a “custom PLD,” if you like. It’s got an internal programmable fabric, plus hardened logic and a couple of processors. The solution, much of which comes pre-canned, is a combination of logic and state machine and multipliers and microcode, with a modicum of programmability. It’s a carefully crafted approach, as we discussed a while back.

QuickLogic has come back a couple of times with power reductions on their original device. I asked what changed in the S2 LP vs. the prior S2: process and design tweaks. There’s no functional difference. I asked if there was ever a reason to use the S2 instead of the S2 LP; their answer was, “Not really.” So it seems to be a story of “lower power for free.” How often do you get that?

Competitors will question how much processing this device will allow – it’s certain that there are other solutions – likely microcontroller-based – that could, with larger memories, handle more sophisticated algorithms – at the cost of higher power. PNI can probably squeeze more algorithm-per-microwatt than a generic microcontroller since their solutions are largely fixed. (Programmability costs…) But they’re still higher than 75 µW.

But much of that is conjecture and gut-feel on my part. Where the breaking point is for each of these architectures… well, I don’t know if anyone has a real answer to that. Almost makes you wish for some way of figuring out what can go into which device for how much power.

You can read more in QuickLogic’s announcement.

 

(Image courtesy QuickLogic)

Leave a Reply

featured blogs
Jan 17, 2020
I once met Steve Wozniak, or he once met me (it's hard to remember the nitty-gritty details)....
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector