editor's blog
Subscribe Now

Sensor Hub Power Drops Again

ArcticLink_3_S2_PR_Image_FINAL_cr.jpgQuickLogic is back, pushing power numbers down again. They’re now touting what they say is the lowest-power sensor hub, at 75 µW, with their ArcticLink 3 S2 LP.

You may recall that QuickLogic’s ArcticLink 3 is a “custom PLD,” if you like. It’s got an internal programmable fabric, plus hardened logic and a couple of processors. The solution, much of which comes pre-canned, is a combination of logic and state machine and multipliers and microcode, with a modicum of programmability. It’s a carefully crafted approach, as we discussed a while back.

QuickLogic has come back a couple of times with power reductions on their original device. I asked what changed in the S2 LP vs. the prior S2: process and design tweaks. There’s no functional difference. I asked if there was ever a reason to use the S2 instead of the S2 LP; their answer was, “Not really.” So it seems to be a story of “lower power for free.” How often do you get that?

Competitors will question how much processing this device will allow – it’s certain that there are other solutions – likely microcontroller-based – that could, with larger memories, handle more sophisticated algorithms – at the cost of higher power. PNI can probably squeeze more algorithm-per-microwatt than a generic microcontroller since their solutions are largely fixed. (Programmability costs…) But they’re still higher than 75 µW.

But much of that is conjecture and gut-feel on my part. Where the breaking point is for each of these architectures… well, I don’t know if anyone has a real answer to that. Almost makes you wish for some way of figuring out what can go into which device for how much power.

You can read more in QuickLogic’s announcement.

 

(Image courtesy QuickLogic)

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: How It Helps in Our Digital World

Sponsored by Maxim Integrated

Gain a basic understanding of how cryptography works and how cryptography can help you protect your designs from security threats.

Click here to download the whitepaper

Featured Chalk Talk

DC-DC for Gate Drive Power

Sponsored by Mouser Electronics and Murata

In motor control and industrial applications, semiconductor switches such as IGBTs and MOSFETS of all types - including newer wide-bandgap devices are used extensively to switch power to a load. This makes DC to DC conversion for gate drivers a challenge. In this episode of Chalk Talk, Amelia Dalton chats with John Barnes of Murata about DC to DC conversion for gate drivers for industrial and motor control applications.

More information about Murata Power Solutions MGJ DC/DC Converters: