editor's blog
Subscribe Now

Sensor Hub Power Drops Again

ArcticLink_3_S2_PR_Image_FINAL_cr.jpgQuickLogic is back, pushing power numbers down again. They’re now touting what they say is the lowest-power sensor hub, at 75 µW, with their ArcticLink 3 S2 LP.

You may recall that QuickLogic’s ArcticLink 3 is a “custom PLD,” if you like. It’s got an internal programmable fabric, plus hardened logic and a couple of processors. The solution, much of which comes pre-canned, is a combination of logic and state machine and multipliers and microcode, with a modicum of programmability. It’s a carefully crafted approach, as we discussed a while back.

QuickLogic has come back a couple of times with power reductions on their original device. I asked what changed in the S2 LP vs. the prior S2: process and design tweaks. There’s no functional difference. I asked if there was ever a reason to use the S2 instead of the S2 LP; their answer was, “Not really.” So it seems to be a story of “lower power for free.” How often do you get that?

Competitors will question how much processing this device will allow – it’s certain that there are other solutions – likely microcontroller-based – that could, with larger memories, handle more sophisticated algorithms – at the cost of higher power. PNI can probably squeeze more algorithm-per-microwatt than a generic microcontroller since their solutions are largely fixed. (Programmability costs…) But they’re still higher than 75 µW.

But much of that is conjecture and gut-feel on my part. Where the breaking point is for each of these architectures… well, I don’t know if anyone has a real answer to that. Almost makes you wish for some way of figuring out what can go into which device for how much power.

You can read more in QuickLogic’s announcement.

 

(Image courtesy QuickLogic)

Leave a Reply

featured blogs
Nov 29, 2023
Cavitation poses a formidable challenge to modern boat design, especially for high-speed sailing vessels participating in events like America's Cup , Vendee Globe , and Route du Rhum . Hydrofoils, in particular, are susceptible to cavitation, which can cause surface dama...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Megawatt Chargers in Electric Commercial Vehicle Infrastructure
In order to move forward with the large-scale implementation of commercial electric vehicles, we need to consider efficiency, availability, reliability, and longevity for the mega-watt chargers required for these applications. In this episode of Chalk Talk, Dr. Martin Schulz from Littelfuse joins Amelia Dalton to discuss the infrastructure demands of electric commercial vehicles, the role that galvanic isolation plays here and why thyristors may be a great choice for the future of electric commercial vehicles.
Jan 17, 2023
37,414 views