editor's blog
Subscribe Now

Vertically Integrated BLE Module

Cypress_EZ-BLE_PRoC_Module.jpgSo you want to get into the wireless gadget business, eh? And you want to go with Bluetooth Low Energy (BLE)? You’re in good company – lots of folks are doing it. But how exactly are you going to go about it?

If you’re a big company with dedicated RF resources and lots of cash targeting high-volume applications (say, over 150,000 units a year), then you’ll probably do your own chip.

If not, well, you might want to think twice about tackling such a project on your own, according to Cypress. For one, RF design is tricky business – not a lot of small companies have RF experts in-house. And they say that it’s hard to find low-volume offshore assembly facilities (OSATs) that can handle RF.

But, perhaps even more importantly, even if you have the RF capabilities, you still have to get certified. Cypress says that, if you know what you’re doing, that can cost $200,000 and take 15 weeks. (Presumably, all bets are off if you don’t know what you’re doing…) That’s, like, over a dollar per device.

Instead, you could use one of many modules already out there. But Cypress says that numerous customers have experienced support challenges using that approach, since the module makers don’t make the ICs or write the stack software. Getting answers to questions can be maddening.

Then, in frustration, the engineers using the module dig into the open-source software to deal with things on their own – without realizing that, by changing the software, they’re nullifying the original certification of the module.

This is an area that Cypress is targeting with their own BLE module – a “programmable radio-on-chip” (PRoC – if you pronounce it –P-Rock, it magically becomes one of the more testosterone-infused names I’ve seen in a while… must utter in a grrrowl). The difference is that they also make the chip and wrote the software – and the design environment. The idea is that, because they own the entire thing, there’s only one place to go for support. No finger-pointing.

Cypress_EZ-BLE_PRoC_Module_block_diagram.jpg

The module has already been tested and certified, so manufacturers incorporating the module get the benefit of that work. (In order to be able to use the BLE logo, manufacturer would still need to pay for a “Declaration ID,” but that’s more of a quick, inexpensive paperwork thing – there’s no actual testing involved.)

You can read more about the details in their announcement.

 

(Images courtesy Cypress)

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

Electronic Fuses (eFuses)

Sponsored by Mouser Electronics and ON Semiconductor

Today’s advanced designs demand advanced circuit protection. The days of replacing old-school fuses are long gone, and we need solutions that provide more robust protection and improved failure modes. In this episode of Chalk Talk, Amelia Dalton chats with Pramit Nandy of ON Semiconductor about the latest advances in electronic fuses, and how they can protect against overcurrent, thermal, and overvoltage.

More information about ON Semiconductor Electronic Fuses