editor's blog
Subscribe Now

Vertically Integrated BLE Module

Cypress_EZ-BLE_PRoC_Module.jpgSo you want to get into the wireless gadget business, eh? And you want to go with Bluetooth Low Energy (BLE)? You’re in good company – lots of folks are doing it. But how exactly are you going to go about it?

If you’re a big company with dedicated RF resources and lots of cash targeting high-volume applications (say, over 150,000 units a year), then you’ll probably do your own chip.

If not, well, you might want to think twice about tackling such a project on your own, according to Cypress. For one, RF design is tricky business – not a lot of small companies have RF experts in-house. And they say that it’s hard to find low-volume offshore assembly facilities (OSATs) that can handle RF.

But, perhaps even more importantly, even if you have the RF capabilities, you still have to get certified. Cypress says that, if you know what you’re doing, that can cost $200,000 and take 15 weeks. (Presumably, all bets are off if you don’t know what you’re doing…) That’s, like, over a dollar per device.

Instead, you could use one of many modules already out there. But Cypress says that numerous customers have experienced support challenges using that approach, since the module makers don’t make the ICs or write the stack software. Getting answers to questions can be maddening.

Then, in frustration, the engineers using the module dig into the open-source software to deal with things on their own – without realizing that, by changing the software, they’re nullifying the original certification of the module.

This is an area that Cypress is targeting with their own BLE module – a “programmable radio-on-chip” (PRoC – if you pronounce it –P-Rock, it magically becomes one of the more testosterone-infused names I’ve seen in a while… must utter in a grrrowl). The difference is that they also make the chip and wrote the software – and the design environment. The idea is that, because they own the entire thing, there’s only one place to go for support. No finger-pointing.

Cypress_EZ-BLE_PRoC_Module_block_diagram.jpg

The module has already been tested and certified, so manufacturers incorporating the module get the benefit of that work. (In order to be able to use the BLE logo, manufacturer would still need to pay for a “Declaration ID,” but that’s more of a quick, inexpensive paperwork thing – there’s no actual testing involved.)

You can read more about the details in their announcement.

 

(Images courtesy Cypress)

Leave a Reply

featured blogs
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 27, 2021
Cadence was recently ranked #7 on Newsweek's Most Loved Workplaces list for 2021 and #17 on Fortune's World's Best Workplaces list. Cadence received top recognition among thousands of other companies... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Fast & Accurate 3D Object Detection for LiDAR with DesignWare ARC EV Processor IP

Sponsored by Synopsys

This demo, developed in partnership with Sensor Cortek, executes the FA3D algorithm on ARC EV7x processor with DNN engine. It shows 3D boxes rendered onto objects detected in the video frames, enabling the development of driver assistance systems.

Click here for more information

featured paper

Using the MAX66242 Mobile Application: The Basics

Sponsored by Maxim Integrated (now part of Analog Devices)

This application note describes the basics of the near-field communication (NFC)/radio frequency identification (RFID) MAX66242EVKIT board and gives an application utilizing the NFC capabilities of iOS and Android® based mobile devices to exercise board functionality. It then demonstrates how the application enables use of memory and secure features in the MAX66242. It also shows how to use the MAX66242 with an onboard I2C temperature sensor, demonstrating the device's energy harvesting feature.

Click to read more

featured chalk talk

Automotive Infotainment

Sponsored by Mouser Electronics and KEMET

In today’s fast-moving automotive electronics design environment, passive components are often one of the last things engineers consider. But, choosing the right passives is now more important than ever, and there is an exciting and sometimes bewildering range of options to choose from. In this episode of Chalk Talk, Amelia Dalton chats with Peter Blais from KEMET about choosing the right passives and the right power distribution for your next automotive design.

Click here for more information about KEMET Electronics Low Voltage DC Auto Infotainment Solutions