editor's blog
Subscribe Now

Vertically Integrated BLE Module

Cypress_EZ-BLE_PRoC_Module.jpgSo you want to get into the wireless gadget business, eh? And you want to go with Bluetooth Low Energy (BLE)? You’re in good company – lots of folks are doing it. But how exactly are you going to go about it?

If you’re a big company with dedicated RF resources and lots of cash targeting high-volume applications (say, over 150,000 units a year), then you’ll probably do your own chip.

If not, well, you might want to think twice about tackling such a project on your own, according to Cypress. For one, RF design is tricky business – not a lot of small companies have RF experts in-house. And they say that it’s hard to find low-volume offshore assembly facilities (OSATs) that can handle RF.

But, perhaps even more importantly, even if you have the RF capabilities, you still have to get certified. Cypress says that, if you know what you’re doing, that can cost $200,000 and take 15 weeks. (Presumably, all bets are off if you don’t know what you’re doing…) That’s, like, over a dollar per device.

Instead, you could use one of many modules already out there. But Cypress says that numerous customers have experienced support challenges using that approach, since the module makers don’t make the ICs or write the stack software. Getting answers to questions can be maddening.

Then, in frustration, the engineers using the module dig into the open-source software to deal with things on their own – without realizing that, by changing the software, they’re nullifying the original certification of the module.

This is an area that Cypress is targeting with their own BLE module – a “programmable radio-on-chip” (PRoC – if you pronounce it –P-Rock, it magically becomes one of the more testosterone-infused names I’ve seen in a while… must utter in a grrrowl). The difference is that they also make the chip and wrote the software – and the design environment. The idea is that, because they own the entire thing, there’s only one place to go for support. No finger-pointing.

Cypress_EZ-BLE_PRoC_Module_block_diagram.jpg

The module has already been tested and certified, so manufacturers incorporating the module get the benefit of that work. (In order to be able to use the BLE logo, manufacturer would still need to pay for a “Declaration ID,” but that’s more of a quick, inexpensive paperwork thing – there’s no actual testing involved.)

You can read more about the details in their announcement.

 

(Images courtesy Cypress)

Leave a Reply

featured blogs
May 24, 2022
Today is going to be my monthly update. This normally runs on the last Friday of the month, but that's a Cadence Global Recharge Day, so we will all be off. For various other reasons, I need to... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

EdgeQ Creates Big Connections with a Small Chip

Sponsored by Cadence Design Systems

Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.

Click here for more information

featured paper

Reduce EV cost and improve drive range by integrating powertrain systems

Sponsored by Texas Instruments

When you can create automotive applications that do more with fewer parts, you’ll reduce both weight and cost and improve reliability. That’s the idea behind integrating electric vehicle (EV) and hybrid electric vehicle (HEV) designs.

Click to read more

featured chalk talk

Power Profiler II

Sponsored by Mouser Electronics and Nordic Semiconductor

If you are working on a low-power IoT design, you are going to face power issues that can get quite complicated. Addressing these issues earlier in your design process can save you a lot of time, effort, and frustration. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther from Nordic Semiconductor about the details of the new Nordic Power Profiler Kit II - including how it can measure actual current, help you configure the right design settings, and show you a visualized power profile for your next design.

Click here for more information about the Nordic Semiconductor Power Profiler Kit II (PPK2)