editor's blog
Subscribe Now

Driving ADAS

ARM reckons that the computational power in your car is set to increase by 100X in the next ten years, mainly through the growth of ADAS (Advanced Driver Assistance Systems). These systems use sensors of many kinds to gather information about the environment, process it, and present it to the driver. While at one level all that ADAS is doing is what a reasonably alert driver does- notices speed limit signs, the position of other vehicles etc, at the next level it gets more exciting. In poor light conditions ADAS can use visual light and RADAR sensors to see better, will use image processing to decide if the dimly seen figure is a pedestrian, a cyclist or a street light and then calculate likely paths, if it is not a street light.

Just that one example will use a ton of processing power and, as the information is safety-critical, the systems to do this will have to be developed accordingly. This, in the automotive environment, means that they will need to conform to ISO 26262, which requires a mass of documentation about the components in use and the software running in the systems. Earlier this year ARM announced a package of safety documentation and support for the Cortex-R5, a core that a number of chip companies are using in processors for automotive applications.

They have now extended the programme to the Cortex-A family, with packages available for the Cortex-A53, the Cortex-A57 and the big beast of the ARM family launched earlier this year, the Cortex-A72.

SoC implementers will get help with the development and safety assessment of SoC designs to help meet the functional safety standards such as ISO 26262 and IEC 61508 through a documentation package. The package includes a safety manual, a FMEA (Failure Modes and Effects Analysis) report and a development interface report. This should shorten significantly the time and effort needed for a certification programme within an SoC company.

ARM intends to provide the same package for other processors once they have waded through the huge amount of work that providing the package involves.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Maxim's Himalaya uSLIC Portfolio

Sponsored by Mouser Electronics and Maxim Integrated

With form factors continuing to shrink, most engineers are working hard to reduce the number of discrete components in their designs. Power supplies, in particular, are problematic - often requiring a number of large components. In this episode of Chalk Talk, Amelia Dalton chats with John Woodward of Maxim Integrated about how power modules can save board space, improve performance, and help reliability.

Click here for more information about Maxim Integrated Himalaya uSLIC™ MAXM1546x Step-Down Power Modules