editor's blog
Subscribe Now

Getting Onto the IoT

Today we talk IoT enablement. Two sources with different goals.

The first one is a platform called iChipNet from ConnectOne (we’ve seen their modules before). And it’s brought to you by a concern for interoperability, which they see as a big barrier to IoT adoption.

When we think “interop,” often we think about hardware compatibility – sensors from different sources working with hubs and brokers and what not, humming away like a well-tuned orchestra. But it’s more than that: much of ConnectOne’s emphasis is on the ability to connect with the Cloud.

The platform consists of:

  • Internet controller chips
  • Ethernet modules
  • WiFi modules
  • A hub (which is one of their modules configured as a WiFi access point); connects to the router via Ethernet
  • A Cloud solution
  • A smartphone app library

IoT_overall_block_diagram.pngThe first three are for Things; the hub is optional; and the last two are to bridge the difficulties they say customers encounter trying to get the whole system working. With the hub, it’s possible to have a kit produced for customers where all of the modules and the hub have their WiFi network information preloaded at the factory so that there’s absolutely no setup required by customers.

The Cloud solution consists of a gateway simply to get communication going. There are no “big data” analysis packs or anything involved (they’re not disallowed; they’re just not provided by ConnectOne). The messaging protocol they use*is proprietary; it’s something they’ve used internally for about 15 years. Because all such details are abstracted under their API, it doesn’t matter to their target customer. There are no pre-defined “objects.”

Meanwhile, Konekt has announced a starter kit for getting devices wireless access through cellular technology (standard cellular, not something like SIGFOX). Called Konekt Dash, it’s a board that can connect directly to cellular service that they’ve pre-provisioned (they’re reselling existing cellular services). Once a designer is up and running, if they want, they can use an API to manage their own cellular service in a sophisticated way between multiple carriers.

They include various “shields” (plug-in modules) for sensors as well as for power options. The platform is hardware-agnostic, meaning that they can plug their “Global SIM” into Arduino, Raspberry Pi, and BeagleBoard hardware.

The slightly odd thing is that they’re billed as a “newly-funded” company – and yet the news is that they’re running a Kickstarter campaign. Why would they do that if they’re funded? For the same reason that many people do – not for the money, but to get feedback and a sense of demand.

You can find more about ConnectOne’s iChipNet platform and the Konekt Dash in their respective announcements.

 

*Look for much more on messaging protocols next Monday.

 

(Image courtesy ConnectOne)

Leave a Reply

featured blogs
Nov 27, 2023
Most design teams use the schematic-driven connectivity-aware environment of Virtuoso Layout XL. However, due to the reuse of legacy designs, third-party tools, and the flexibility of the Virtuoso platform, a design can lose binding and connectivity. Despite the layout being ...
Nov 27, 2023
Qualcomm Technologies' SVP, Durga Malladi, talks about the current benefits, challenges, use cases and regulations surrounding artificial intelligence and how AI will evolve in the near future....
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines. Also join us for a webinar on the future of the Programmable Solution Group.

Register now: intel.com/leap

featured chalk talk

Energy Storage Systems
Increasing electric vehicle sales, decreasing battery sales, and a shift in energy consumption has made energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton chats with Gijs Werner from Amphenol FCI Basics about the functions and components involved in commercial energy storage systems, residential energy storage systems and EV charging stations. They investigate the qualifications needed for connectors in energy storage systems and what kind of connectors Amphenol FCI Basics offers for your next energy storage system design.
Apr 3, 2023
28,393 views