editor's blog
Subscribe Now

Optimizing at the Cellphone Antenna

So you run across an announcement from Imec that they’ve presented a circuit at ISSCC that involves tuning to match changing antenna impedances in cell phones. And if you’ve been hanging out in the same places I have, you might have the following reaction: “Hey, this is what some MEMS guys are doing as well! Fight! Fight! Fight!”

Turns out it’s not quite that simple. I’d feel like it was just another day of me discovering yet another knowledge gap, but I wasn’t the only one conflating two concepts. Conversations with Cavendish Kinetics and WiSpry helped me pry the two issues apart.

You may recall coverage we’ve done of both WiSpry and Cavendish Kinetics on the MEMS side and Peregrine on the SoS side. They make capacitor arrays that can be configured as variable capacitors. The first two guys use MEMS switches; Peregrine uses electrical.

What problems do they solve? They help tune the antenna as conditions drift on the phone (grip changes etc.). In fact, even this conflates two things, as we covered before: both matching changing antenna impedances and recentering the resonance of the antenna to ensure that the strongest possible signals enter the phone.

This cell phone repair notes, critically, that frequency centering can’t be done too tightly: full duplex on your cellphone is achieved by placing receive and transmit on two slightly different frequencies so that they don’t interfere with each other. So the antenna response has to be wide enough to provide good performance at both frequencies.

Meanwhile, Imec is actually working on something different. The duplexer in the phone separates out the receive and transmit signal paths. Filters are typically implemented using relatively bulky surface acoustic wave (SAW) or thin-film bulk acoustic resonator ((T)FBAR) devices. Imec wanted to try instead to use an electrical-balancing (EB) technique, with the initial goal of simplifying the circuit.Imec_ISSCC_image.png

The high-level concept they’re exploring was actually used in the original telephone: taking a combined full duplex signal, consisting of mixed receive and transmit, and subtracting out the transmit signal (which you know because you’re at its origin) to get the pure receive signal. While that was a simple thing on old phones at voice frequency, it’s apparently not so easy up in the many-megahertz range with changing conditions. The three challenges in particular are isolation between receive and transmit, linearity, and insertion loss – and managing these in the face of changing antenna impedance.

In this particular project, Imec tackled the linearity and insertion loss as a step towards a commercially-viable EB duplexer. This is distinct from optimizing the antenna; they’re complementary solutions.

That’s all well and good, but there’s more promise if this all works out. If you can effectively isolate receive and transmit through subtraction, then you no longer need to place the signals on different frequencies. In fact, there was a paper presented at ISSCC by Columbia University that claims to have done just that: run receive and transmit at the same frequency. (Unfortunately I missed ISSCC this year due to illness and didn’t see the presentation; I received no response to a request for more information from Columbia).

And here’s the big payoff: if we can combine signals at one frequency, then instead of receive on one and transmit on the other, we can have both on both – we’ve doubled our capacity just like that.

So a relatively obscure-sounding topic (believe me, reading the Imec paper got me lost pretty quickly) may turn out to have rather astonishing consequences. We might eventually return to the old telephone approach that used to work so well.

The Imec paper can be found here (behind a paywall).

 

(Image courtesty Imec)

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Power High-Performance Applications with Renesas RA8 Series MCUs
Sponsored by Mouser Electronics and Renesas
In this episode of Chalk Talk, Amelia Dalton and Kavita Char from Renesas explore the first 32-bit MCUs based on the new Arm® Cortex® -M85 core. They investigate how these new MCUs bridge the gap between MCUs and MPUs, the advanced security features included in this new MCU portfolio, and how you can get started using the Renesas high performance RA8 series in your next design. 
Jan 9, 2024
19,308 views