editor's blog
Subscribe Now

Microsemi Moves GNSS Indoors

Much of the cellular build-out in areas that already have coverage is happening through small cells. It’s like we’ve gotten the broad brush strokes in place; now we’re fine-tuning coverage and capacity here and there as needed.

And much of this is happening in buildings – malls, office buildings, and other areas where large numbers of people concentrate.

Which creates a problem: these cells rely on accurate timing from GPS (or GNSS, generically). And, as we’ve seen in our discussions of indoor navigation, GPS isn’t a thing indoors. At least, not for your average receiver.

So what happens is, well, exactly what you’d expect: you put an antenna on the building to receive the GPS signal. That involves getting power up there and then distributing the received signal via coax.

That might not seem like much of a burden for those of you accustomed to setting up a TV satellite dish for your home. But, apparently, this is a bigger deal with big buildings. Running those bulky, shielded wires around isn’t trivial. And, apparently, the operator may even have to rent the space on the roof where the antenna goes. Oi, everyone with their hand out!

So Microsemi has come up with an alternative. They call it an integrated GNSS master – IGM. It will provide the master timing signal for the small cells installed in the building. It’s designed to be installed indoors.

“But there is no GPS signal indoors,” you might reasonably protest. Well, apparently there is – it’s just not a strong signal. (OK, I’m sure you can find places where the signal is pretty much gone. So… yeah, the Panic Room is probably not a good place to mount this. Although… read on…) How do they capture this signal?

First, they have a very sensitive receiver. They also take advantage of assisted GNSS (A-GNSS). That covers a broad range of alternative ways of receiving GNSS signals. Some are sent by Ethernet; some are pre-calculated and sent ahead of time; etc. Together, through what we might call “signal fusion” (by analogy with sensor fusion) with whatever live GPS signal it can detect, these allow the IGM to function indoors. It also improves the time-to-first-fix.

“But you still have to route power and signals,” you might continue to protest. Well, yes and no. There’s no clunky coax: it’s Ethernet. And the unit leverages Power over Ethernet (PoE). So once you’ve plugged the Ethernet cable in, you’re good to go. Much easier to wire; no conduit or high voltages to muck about with.

Microsemi_Integrated_GNSS_Master-IGM-Diagram_cr.jpg 

(Image courtesy Microsemi)

Thinking ahead, could this be leveraged for indoor navigation? That’s not Microsemi’s immediate plan, but they say that, in principle, it could.

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 20, 2021
As it seems to be becoming a (bad) habit, This Week in CFD is presented here as Last Week in CFD. But that doesn't make the news any less relevant. Great article on wind tunnels because they go... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Maxim Integrated is now part of Analog Devices

Sponsored by Maxim Integrated (now part of Analog Devices)

What if we didn’t wait around for the amazing inventions of tomorrow – and got busy creating them today?

See What If: analog.com/Maxim

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated (now part of Analog Devices)

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

featured chalk talk

Just 1-Wire to Power and Operate I2C or SPI Endpoints

Sponsored by Mouser Electronics and Maxim Integrated (now part of Analog Devices)

If you are working on a connection or IO constrained design, a one wire solution could be a great way for you to power and operate your I2C or SPI endpoints. In this episode of Chalk Talk, Amelia Dalton chats with Scott Jones from Maxim Integrated about the DS28E18 communications bridge: a one wire solution that can help you address a variety of system level challenges including protocol conversion, wiring limitations, and communication distance concerns.

Click here for more information about the Maxim Integrated DS28E18EVKIT Evaluation System