editor's blog
Subscribe Now

ARM embraces 26262 Auto safety standard update

A couple of months ago, I wrote about ISO 26262 and the changes that this was forcing on the chip development process. (Spaghetti versus ISO 26262 https://www.eejournal.com/archives/articles/20141125-iso26262).

Many of the chips used in vehicles use ARM processor cores, particularly the Cortex-R5, and today ARM has announced that it is making available a safety document set that provide developers with the information needed to demonstrate that their products are suitable for use in systems that meet the highest level (ASIL-D) of safety.

To do this, ARM went back over the entire development process, from initial specification through to final verification. This has been time consuming but as well as providing the material for the Cortex-R5, it confirmed that the development process was robust. It also means that the procedures are in place to produce the safety document sets as part of the normal development process for future cores.

The documentation can also be used for the core safety standard, IEC 61508 and other industry specific standards, such as IEC 62304 for medical products and DO-178 for defence.

As well as hardware, ARM is also supporting software. The ARM compiler is now certified by TUV-SUD as being appropriate for developing software for systems up to ISO 26262 ASIL-D and IEC 61508 SIL-3. Also within the R5, and other cores are functions like memory protection designed for safer software.

During the briefing Chris Turner of ARM came up with something that I hadn’t thought of. One of the consequences of ISO 26262 is that there is now a common process and language that runs through the automotive industry, from the manufacturers like Audi and Mercedes, down to the lowest level of suppliers – something that has never existed. This can only be a good thing.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

Solutions for Heterogeneous Multicore

Sponsored by Siemens Digital Industries Software

Multicore processing is more popular than ever before but how do we take advantage of this new kind of processing? In this episode of Chalk Talk, Jeff Hancock from Siemens and Amelia Dalton investigate the challenges inherent in multicore processing, the benefits of hypervisors and multicore frameworks, and what you need to consider when choosing your next multicore processing solution.

Click here for more information about Multicore Enablement: Enabling today’s most advanced MPSoC systems