editor's blog
Subscribe Now

Towards Smaller Solar Inverters

Inverters are getting smaller.

We’re talking here about the inverters used in solar cells to convert the DC that they generate into AC for the grid. But there seem to be a couple of different motivations for this reduction in inverter size; I was made aware of them by a two different product releases. Learn more about solar energy implementations for your home at solar Jindalee.

First came an SoC from Semitech. Semitech has primarily been focused on power-line communications (PLC) on the so-called Smart Grid. Their focus hasn’t so much been on residential settings, where broadband connections dominate, but rather longer-distance machine-to-machine narrowband connections. We’re talking hundreds of (electric) meters communicating over a few kilometers.

That said, they noticed an opportunity. Traditionally, a single inverter like the GoodWe inverter will serve multiple panels; this helps keep cost down (always an issue as solar struggles to compete with other forms of energy). But Semitech notes that there are some weaknesses with this arrangement. In particular, the one inverter becomes a single point of failure that can take all of its panels out of action. Efficiency also gets tuned to the needs of the worst (e.g., most shaded) panel – meaning that energy is wasted from the other panels.

The ideal would be a micro-inverter for each panel – something that’s generally been a cost challenge. So Semitech is trying to reduce that added cost by integrating the inverter electronics (not the transformers) into the PLC chip. So any inverter that was intended to communicate could get the inverter control circuitry almost for free (it’s a small add-on to the PLC circuitry, which dominates the chip).

By the way, apparently the same chip can be used for LED control if loaded with different software.

Meanwhile, ST Microelectronics announced a rather simpler product: an SiC diode. It replaces larger devices that have been needed in order to provide sufficient overcurrent margin. The new SiC diode can handle higher current spikes, contributing to a smaller inverter.

In this case, the small-inverter drive comes from a project driven by Google and IEEE called The Little Box Challenge. Here the idea is that smaller inverters will reduce the size of the cooler-sized box that’s currently needed for a residential solar installation. That makes it less of an eyesore, reduces the footprint, and – critically – reduces cost.

If you’re not part of the Challenge yet, it’s too late; registration is closed. The final prize will be announced next January.

That said, ST also seems heavily focused on the automotive market, saying that the new diode meets the requirements for such applications as on-board battery chargers for plug-in hybrids. It has a reverse breakdown of 650 V, and they boast zero recovery time.

You can find out more about these two products in the releases (Semitech and ST); you can find out more about the Little Box Challenge here.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Traction Inverter

Sponsored by Infineon

Not only are traction inverters integral parts of an electric drive train and vital to the vehicle motion, but they can also make a big difference when it comes to the energy efficiency and functional safety of electric vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Mathew Anil from Infineon about the variety of roles that traction inverters play battery electric vehicles, how silicon carbide technology in traction inverters can reduce the size of electric car batteries and how traction inverters can also help with cost reduction, functional safety and more.

Click here for more information about Automotive IGBT & CoolSiC™ MOSFET Modules