editor's blog
Subscribe Now

Towards Smaller Solar Inverters

Inverters are getting smaller.

We’re talking here about the inverters used in solar cells to convert the DC that they generate into AC for the grid. But there seem to be a couple of different motivations for this reduction in inverter size; I was made aware of them by a two different product releases.

First came an SoC from Semitech. Semitech has primarily been focused on power-line communications (PLC) on the so-called Smart Grid. Their focus hasn’t so much been on residential settings, where broadband connections dominate, but rather longer-distance machine-to-machine narrowband connections. We’re talking hundreds of (electric) meters communicating over a few kilometers.

That said, they noticed an opportunity. Traditionally, a single inverter will serve multiple panels; this helps keep cost down (always an issue as solar struggles to compete with other forms of energy). But Semitech notes that there are some weaknesses with this arrangement. In particular, the one inverter becomes a single point of failure that can take all of its panels out of action. Efficiency also gets tuned to the needs of the worst (e.g., most shaded) panel – meaning that energy is wasted from the other panels.

The ideal would be a micro-inverter for each panel – something that’s generally been a cost challenge. So Semitech is trying to reduce that added cost by integrating the inverter electronics (not the transformers) into the PLC chip. So any inverter that was intended to communicate could get the inverter control circuitry almost for free (it’s a small add-on to the PLC circuitry, which dominates the chip).

Semitech_image_ret_copy.png

(Click to enlarge)

Image courtesy Semitech.

By the way, apparently the same chip can be used for LED control if loaded with different software.

Meanwhile, ST Microelectronics announced a rather simpler product: an SiC diode. It replaces larger devices that have been needed in order to provide sufficient overcurrent margin. The new SiC diode can handle higher current spikes, contributing to a smaller inverter.

In this case, the small-inverter drive comes from a project driven by Google and IEEE called The Little Box Challenge. Here the idea is that smaller inverters will reduce the size of the cooler-sized box that’s currently needed for a residential solar installation. That makes it less of an eyesore, reduces the footprint, and – critically – reduces cost.

If you’re not part of the Challenge yet, it’s too late; registration is closed. The final prize will be announced next January.

That said, ST also seems heavily focused on the automotive market, saying that the new diode meets the requirements for such applications as on-board battery chargers for plug-in hybrids. It has a reverse breakdown of 650 V, and they boast zero recovery time.

ST_screenshot.png
 

Image courtesy ST Microelectronics

You can find out more about these two products in the releases (Semitech and ST); you can find out more about the Little Box Challenge here.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

Available DesignWare MIPI D-PHY IP for 22-nm Process

Sponsored by Synopsys

This video describes the advantages of Synopsys' MIPI D-PHY IP for 22-nm process, available in RX, TX, bidirectional mode, 2 and 4 lanes, operating at 10 Gbps. The IP is ideal for IoT, automotive, and AI Edge applications.

Click here for more information about DesignWare MIPI IP Solutions

featured paper

How to optimize an OpenCL Kernel for the data center using Silexica's SLX FPGA

Sponsored by Silexica

FPGAs are being increasingly employed as co-processors in data centers. This application note explains how SLX FPGA accelerates a Fintech design example, leveraging Xilinx’s Vitis Platform’s bottom-up flow, Alveo U200 accelerator card, and Vitis quantitative finance library.

Click here to download the whitepaper

Featured Chalk Talk

Next Generation Connectivity and Control Concepts for Industry 4.0

Sponsored by Mouser Electronics and Molex

Industry 4.0 promises major improvements in terms of efficiency, reduced downtime, automation, monitoring, and control. But Industry 4.0 also demands a new look at our interconnect solutions. In this episode of Chalk Talk, Amelia Dalton chats with Mark Schuerman of Molex about Industry 4.0 and how to choose the right connectors for your application.

Click here for more information about Molex Industry 4.0 Solutions