editor's blog
Subscribe Now

Towards Smaller Solar Inverters

Inverters are getting smaller.

We’re talking here about the inverters used in solar cells to convert the DC that they generate into AC for the grid. But there seem to be a couple of different motivations for this reduction in inverter size; I was made aware of them by a two different product releases. Learn more about solar energy implementations for your home at solar Jindalee.

First came an SoC from Semitech. Semitech has primarily been focused on power-line communications (PLC) on the so-called Smart Grid. Their focus hasn’t so much been on residential settings, where broadband connections dominate, but rather longer-distance machine-to-machine narrowband connections. We’re talking hundreds of (electric) meters communicating over a few kilometers.

That said, they noticed an opportunity. Traditionally, a single inverter like the GoodWe inverter will serve multiple panels; this helps keep cost down (always an issue as solar struggles to compete with other forms of energy). But Semitech notes that there are some weaknesses with this arrangement. In particular, the one inverter becomes a single point of failure that can take all of its panels out of action. Efficiency also gets tuned to the needs of the worst (e.g., most shaded) panel – meaning that energy is wasted from the other panels.

The ideal would be a micro-inverter for each panel – something that’s generally been a cost challenge. So Semitech is trying to reduce that added cost by integrating the inverter electronics (not the transformers) into the PLC chip. So any inverter that was intended to communicate could get the inverter control circuitry almost for free (it’s a small add-on to the PLC circuitry, which dominates the chip).

By the way, apparently the same chip can be used for LED control if loaded with different software.

Meanwhile, ST Microelectronics announced a rather simpler product: an SiC diode. It replaces larger devices that have been needed in order to provide sufficient overcurrent margin. The new SiC diode can handle higher current spikes, contributing to a smaller inverter.

In this case, the small-inverter drive comes from a project driven by Google and IEEE called The Little Box Challenge. Here the idea is that smaller inverters will reduce the size of the cooler-sized box that’s currently needed for a residential solar installation. That makes it less of an eyesore, reduces the footprint, and – critically – reduces cost.

If you’re not part of the Challenge yet, it’s too late; registration is closed. The final prize will be announced next January.

That said, ST also seems heavily focused on the automotive market, saying that the new diode meets the requirements for such applications as on-board battery chargers for plug-in hybrids. It has a reverse breakdown of 650 V, and they boast zero recovery time.

You can find out more about these two products in the releases (Semitech and ST); you can find out more about the Little Box Challenge here.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

An Engineer's Guide to Designing with Precision Amplifiers

Sponsored by Texas Instruments

Engineers face many challenges when designing analog circuits. This e-book covers common topics related to these products, including operational amplifier (op amp) specifications and printed circuit board layout issues, instrumentation amplifier linear operating regions, and electrical overstress.

Click to read more

featured chalk talk

Tackling Automotive Software Cost and Complexity

Sponsored by Mouser Electronics and NXP Semiconductors

With the sheer amount of automotive software cost and complexity today, we need a way to maximize software reuse across our process platforms. In this episode of Chalk Talk, Amelia Dalton and Daniel Balser from NXP take a closer look at the software ecosystem for NXP’s S32K3 MCU. They investigate how real-time drivers, a comprehensive safety software platform, and high performance security system will help you tackle the cost and complexity of automotive software development.

Click here for more information about NXP Semiconductors S32K3 Automotive General Purpose MCUs