editor's blog
Subscribe Now

Porous Silicon and Triboelectricity

Last December’s IEDM conference included energy harvesting as a topic; a couple of papers caught my attention. You could almost think of one of them as bridging batteries and capacitors; the other leverages an everyday household phenomenon in a new way.

The first paper, from a collaboration between Intel, Florida Int’l Univ., and Univ. of Turku, demonstrated a way to create porous silicon to increase surface area in a capacitor. They do this with an etch that, in principle, is capable of a 1000:1 aspect ratio, although other limitations limited the etch depth, as we’ll see.

The idea is that, by “hollowing” out solid silicon with numerous small pores, you get the benefit of surface area inside the bulk, not just on the top of the silicon. Smaller pores mean more surface area, but they’re also harder for ions to navigate through. So they used a combination of large and small pores, tapering them slightly so that ions could more easily enter to keep the performance high.

Pore_pictures.png

But there’s a catch here: it turns out that, left like this, the silicon surface will oxidize and degrade after repeated cycling; the surface needs to be stabilized through a coating. They had demonstrated carbon as an effective coating, but that required high temperatures (above 650 °C). So in this work, they focused on atomic-layer deposition (ALD) of TiN. They did this at temperatures between 380 and 450 °C (and could have done 280 °C had they used a different precursor).

They used a modification of typical ALD processes, presumably because of the fact that they were depositing not on a plane, but into a porous material. The normal process is to let the precursor soak for 1-2 seconds; they gave it 30 seconds in a so-called “stop-flow” process.

While the coating stabilized the surface, it also decreased surface area. A 2.5-nm layer reduced the surface area by 13% over uncoated; a 10-nm layer reduced it by 53%. So limiting the thickness is important to maintaining performance.

As to the pore depth, they found they could etch as deep as 254 µm. But they found that, upon heating, passivating hydrogen came off – which caused stresses and cracking. This became a problem with pores deeper than 15 µm, so they limited themselves to a range of 2 – 12 µm.

This device inhabits a space between capacitors and batteries. It uses mechanisms similar to capacitors, but because it’s leveraging the hollow-out interior of the bulk, it also shares the 3D characteristics of a battery. The power is going to be determined by the mobility of the ions through the pores. But, as you can see, this competes well in power and energy densities.

Energy-Power_plot.png

And there’s another payoff: While lithium ion or lithium thin-film batteries can be cycled only a hundred or so times, the porous silicon device could be charged hundreds of thousands of times.

Meanwhile, in a totally different vein, a team from KAIST and NASA Ames experimented with “triboelectricity” – essentially, the kind of static electricity you build up when rubbing something. It needs some kind of external pressure to make it work – that’s the source of energy.

The idea goes as follows: a polymer layer is placed over metal; another movable metal surface then contacts the polymer on top so that, when in contact, you effectively have a polymer sandwich. In this configuration, the polymer accepts charge from the top metal, leaving a net positive charge in the metal. The metal layer is then moved away from the polymer.

The two metal layers are connected through a resistor. So now, because that top metal layer has moved out of range, the negative charges move towards the lower metal layer, and the excess charges on the top metal rush from the top metal layer, through the resistor – doing work – to the bottom layer.

This process is repeated, and the charges travel back up to the top layer when it comes in contact again.

Tribo_diagram.png

The physical implementation of this involved small polydimethylsiloxane (PDMS) pyramids that would get squished by the top metal sliver contact. The size of the pyramids matters – smaller ones give more surface area and therefore a higher voltage, and they’re more sensitive. Larger ones, on the other hand, can handle a wider range of pressure because the pressure “saturates” at a higher level (the bigger pyramids have a higher restoring force).Pyramids.png

They were able to extract hundreds of µW/cm2 – enough to run, for example, some kind of implantable device. Of course, you need a source of motion – either vibration or… makes me wonder if the periodic pressure in the blood could be harvested.

If you have the IEDM proceedings, you can find all the details in papers 8.2 and 8.3.

 

(All images courtesy IEDM.)

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

Using the MAX66242 Mobile Application, the Basics

Sponsored by Analog Devices

This application note describes the basics of the near-field communication (NFC)/radio frequency identification (RFID) MAX66242EVKIT board and an application utilizing the NFC capabilities of iOS and Android® based mobile devices to exercise board functionality. It then demonstrates how the application enables the user with the ability to use the memory and secure features of the MAX66242. It also shows how to use the MAX66242 with an onboard I2C temperature sensor which demonstrates the energy harvesting feature of the device.

Click to read more

featured chalk talk

Hot-Swap and Power Protection -- Mouser Electronics and Analog Devices

Sponsored by Mouser Electronics and Analog Devices

When it comes to our always-on, critical systems we need to carefully consider power protection and maintainability. In this episode of Chalk Talk, Amelia Dalton and Dwight Larson investigate the issues that surround hot-plugging into an energized power supply, the best solutions to consider, what the different hot-swap circuit topologies look like for a variety of applications and why the MAX15090B/C with its innovative current foldback startup may be the best solution for your next design.

Click here for more information about Maxim Integrated MAX15090B/MAX15090C Hot Swap ICs