editor's blog
Subscribe Now

Porous Silicon and Triboelectricity

Last December’s IEDM conference included energy harvesting as a topic; a couple of papers caught my attention. You could almost think of one of them as bridging batteries and capacitors; the other leverages an everyday household phenomenon in a new way.

The first paper, from a collaboration between Intel, Florida Int’l Univ., and Univ. of Turku, demonstrated a way to create porous silicon to increase surface area in a capacitor. They do this with an etch that, in principle, is capable of a 1000:1 aspect ratio, although other limitations limited the etch depth, as we’ll see.

The idea is that, by “hollowing” out solid silicon with numerous small pores, you get the benefit of surface area inside the bulk, not just on the top of the silicon. Smaller pores mean more surface area, but they’re also harder for ions to navigate through. So they used a combination of large and small pores, tapering them slightly so that ions could more easily enter to keep the performance high.

Pore_pictures.png

But there’s a catch here: it turns out that, left like this, the silicon surface will oxidize and degrade after repeated cycling; the surface needs to be stabilized through a coating. They had demonstrated carbon as an effective coating, but that required high temperatures (above 650 °C). So in this work, they focused on atomic-layer deposition (ALD) of TiN. They did this at temperatures between 380 and 450 °C (and could have done 280 °C had they used a different precursor).

They used a modification of typical ALD processes, presumably because of the fact that they were depositing not on a plane, but into a porous material. The normal process is to let the precursor soak for 1-2 seconds; they gave it 30 seconds in a so-called “stop-flow” process.

While the coating stabilized the surface, it also decreased surface area. A 2.5-nm layer reduced the surface area by 13% over uncoated; a 10-nm layer reduced it by 53%. So limiting the thickness is important to maintaining performance.

As to the pore depth, they found they could etch as deep as 254 µm. But they found that, upon heating, passivating hydrogen came off – which caused stresses and cracking. This became a problem with pores deeper than 15 µm, so they limited themselves to a range of 2 – 12 µm.

This device inhabits a space between capacitors and batteries. It uses mechanisms similar to capacitors, but because it’s leveraging the hollow-out interior of the bulk, it also shares the 3D characteristics of a battery. The power is going to be determined by the mobility of the ions through the pores. But, as you can see, this competes well in power and energy densities.

Energy-Power_plot.png

And there’s another payoff: While lithium ion or lithium thin-film batteries can be cycled only a hundred or so times, the porous silicon device could be charged hundreds of thousands of times.

Meanwhile, in a totally different vein, a team from KAIST and NASA Ames experimented with “triboelectricity” – essentially, the kind of static electricity you build up when rubbing something. It needs some kind of external pressure to make it work – that’s the source of energy.

The idea goes as follows: a polymer layer is placed over metal; another movable metal surface then contacts the polymer on top so that, when in contact, you effectively have a polymer sandwich. In this configuration, the polymer accepts charge from the top metal, leaving a net positive charge in the metal. The metal layer is then moved away from the polymer.

The two metal layers are connected through a resistor. So now, because that top metal layer has moved out of range, the negative charges move towards the lower metal layer, and the excess charges on the top metal rush from the top metal layer, through the resistor – doing work – to the bottom layer.

This process is repeated, and the charges travel back up to the top layer when it comes in contact again.

Tribo_diagram.png

The physical implementation of this involved small polydimethylsiloxane (PDMS) pyramids that would get squished by the top metal sliver contact. The size of the pyramids matters – smaller ones give more surface area and therefore a higher voltage, and they’re more sensitive. Larger ones, on the other hand, can handle a wider range of pressure because the pressure “saturates” at a higher level (the bigger pyramids have a higher restoring force).Pyramids.png

They were able to extract hundreds of µW/cm2 – enough to run, for example, some kind of implantable device. Of course, you need a source of motion – either vibration or… makes me wonder if the periodic pressure in the blood could be harvested.

If you have the IEDM proceedings, you can find all the details in papers 8.2 and 8.3.

 

(All images courtesy IEDM.)

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 26, 2023
Our new AI-powered custom design solution, Virtuoso Studio, leverages our 30 years of industry knowledge and leadership, providing innovative features, reimagined infrastructure for unrivaled productivity, and new levels of integration that stretch beyond classic design bound...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

In-Cabin Monitoring Systems (ICMS) Using Automotive Short Range Radar
Sponsored by Infineon
Worldwide regulation and legislation is driving a demand for automotive in-cabin monitoring systems. In this episode of Chalk Talk, Michael Thomas and Amelia Dalton investigate how short range radar can be utilized for a variety of in-cabin monitoring systems. They also examine the implementation of these different systems and how Infineon’s low-cost and low power radar solutions could make our vehicles safer than ever before.
Nov 1, 2022
38,051 views