editor's blog
Subscribe Now

A Microphone for Gestures and Canines

A while back, when looking at Elliptic Labs ultrasonic gesture recognition, we mentioned that they were able to do this based on the fact that Knowles microphones worked in the ultrasonic range. But they weren’t willing to say much more about the microphones.

2015-01-07_10_13_31-SPU0410LR5H.pdf_-_Adobe_Reader.pngSo I checked with Knowles; they had announced their ultrasonic microphone back in June. My first question was whether this was just a tweak of the filters or if it was a completely new sensor. And the answer: the MEMS is the same as the one used for their regular audio microphones; they’ve changed the accompanying ASIC. The packaging is also the same.

The next obvious question is, what is this good for, other than gesture recognition? Things got a bit quieter there – apparently there are some use cases being explored, but they can’t talk about them. So we’ll have to watch for those.

But with respect to the gesture thing, it turns out that, in theory, this can replace the proximity sensor. It’s low enough power that the mic can be operated “always on.” Not only can it detect that something is nearby, in the manner of a proximity sensor, it can go it one better: it can identify what that item is.

From a bill-of-materials (BOM) standpoint, at present you still need to use a separate ultrasonic transmitter, so you’re replacing one component (the proximity detector) with another (the transmitter). But in the future, the speakers could be leveraged, eliminating the transmitter.

It occurred to me, however, that, for this to become a thing, the ultrasonic detection will really need to be abstracted at the OS (or some higher) level, separating it from the regular audio stream. The way things are now, if you plugged a headset into the phone or computer, all the audio gets shunted to the headset, including the ultrasonic signal. Which probably isn’t useful unless you’re trying to teach your dog to use the phone (hey, they’re that intuitive!).

For this really to work, only the audible component should be sent to the headset; the ultrasonic signal and its detection would need to stay in the built-in speaker/mic pair to enable gesture recognition. Same thing when plugging in external speakers.

I’m sure that’s technically doable, although it probably disturbs a part of the system that’s been fixed for years. Which is never fun to dig into. But sometimes you’ve just got to grit your teeth and shed some of the legacy hardware in order to move forward.

You can find out more about Knowles’ ultrasonic microphone here.

 

[Editor’s note: For anyone clicking in through LinkedIn, I changed the title. It was supposed to be light, but, too late, I realized it could be taken as negative, which wasn’t the intent.]

(Image courtesy Knowles)

Leave a Reply

featured blogs
Aug 13, 2020
General Omar Bradley famously said: '€œAmateurs talk strategy. Professionals talk logistics.'€ And Napoleon (perhaps) said "An army marches on its stomach". That's not to underestimate... [[ Click on the title to access the full blog on the Cadence Commun...
Aug 12, 2020
Samtec has been selling its products online since the early 2000s, the very early days of eCommerce. We’ve been through a couple of shopping cart iterations since then. Before this recent upgrade, Samtec.com had been running on a cart system that was built in 2011. It w...
Aug 11, 2020
Making a person appear to say or do something they did not actually say or do has the potential to take the war of disinformation to a whole new level....
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Paper

True 3D EM Modeling Enables Fast, Accurate Analysis

Sponsored by Cadence Design Systems

Tired of patchwork 3D EM analysis? Impedance discontinuity can destroy your BER and cause multiple design iterations. Using today’s 3D EM modeling tools can take you days to accurately model the interconnect structures. The Clarity™ 3D Solver lets you tackle the most complex EM challenges when designing systems for 5G, high-performance computing, automotive and machine learning applications. The Clarity 3D Solver delivers gold-standard accuracy, 10X faster analysis speeds and virtually unlimited capacity for true 3D modeling of critical interconnects in PCB, IC package and system-on-IC (SoIC) designs.

Click here for more information

Featured Paper

Computational Software: 4 Ways It is Transforming System Design & Hardware Design

Sponsored by BestTech Views

Cadence President Anirudh Devgan shares his detailed insights on Computational Software. Anirudh provides a clear definition of computational software, and four specific ways computational software is transforming system design & hardware design -- including highly distributed compute, reduced memory footprints, co-optimization, and machine learning applications.

Click here for the white paper.

Featured Chalk Talk

Series 2 Product Security

Sponsored by Mouser Electronics and Silicon Labs

Side channel attacks such as differential power analysis (DPA) present a serious threat to our embedded designs. If we want to defend our systems from DPA and similar attacks, it is critical that we have a secure boot and root of trust. In this episode of Chalk Talk, Amelia Dalton chats with Gregory Guez from Silicon Labs about DPA, secure debug, and the EFR32 Series 2 Platform.

Click here for more information about Silicon Labs xGM210P Wireless Module Starter Kit