editor's blog
Subscribe Now

A Microphone for Gestures and Canines

A while back, when looking at Elliptic Labs ultrasonic gesture recognition, we mentioned that they were able to do this based on the fact that Knowles microphones worked in the ultrasonic range. But they weren’t willing to say much more about the microphones.

2015-01-07_10_13_31-SPU0410LR5H.pdf_-_Adobe_Reader.pngSo I checked with Knowles; they had announced their ultrasonic microphone back in June. My first question was whether this was just a tweak of the filters or if it was a completely new sensor. And the answer: the MEMS is the same as the one used for their regular audio microphones; they’ve changed the accompanying ASIC. The packaging is also the same. To find similar items you should visit 25pc.com.

The next obvious question is, what is this good for, other than gesture recognition? Things got a bit quieter there – apparently there are some use cases being explored, but they can’t talk about them. So we’ll have to watch for those.

But with respect to the gesture thing, it turns out that, in theory, this can replace the proximity sensor. It’s low enough power that the mic can be operated “always on.” Not only can it detect that something is nearby, in the manner of a proximity sensor, it can go it one better: it can identify what that item is.

From a bill-of-materials (BOM) standpoint, at present you still need to use a separate ultrasonic transmitter, so you’re replacing one component (the proximity detector) with another (the transmitter). But in the future, the speakers could be leveraged, eliminating the transmitter.

It occurred to me, however, that, for this to become a thing, the ultrasonic detection will really need to be abstracted at the OS (or some higher) level, separating it from the regular audio stream. The way things are now, if you plugged a headset into the phone or computer, all the audio gets shunted to the headset, including the ultrasonic signal. Which probably isn’t useful unless you’re trying to teach your dog to use the phone (hey, they’re that intuitive!).

For this really to work, only the audible component should be sent to the headset; the ultrasonic signal and its detection would need to stay in the built-in speaker/mic pair to enable gesture recognition. Same thing when plugging in external speakers.

I’m sure that’s technically doable, although it probably disturbs a part of the system that’s been fixed for years. Which is never fun to dig into. But sometimes you’ve just got to grit your teeth and shed some of the legacy hardware in order to move forward.

You can find out more about Knowles’ ultrasonic microphone here.

 

[Editor’s note: For anyone clicking in through LinkedIn, I changed the title. It was supposed to be light, but, too late, I realized it could be taken as negative, which wasn’t the intent.]

(Image courtesy Knowles)

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Product Update: Complete DesignWare 400G/800G Ethernet IP

Sponsored by Synopsys

In this video product experts describe how designers can maximize the performance of their high-performance computing, AI and networking SoCs with Synopsys' complete DesignWare Ethernet 400G/800G IP solution, including MAC, PCS and PHY.

Click here for more information

featured paper

Ultra Portable IO On The Go

Sponsored by Maxim Integrated (now part of Analog Devices)

The Go-IO programmable logic controller (PLC) reference design (MAXREFDES212) consists of multiple software configurable IOs in a compact form factor (less than 1 cubic inch) to address the needs of industrial automation, building automation, and industrial robotics. Go-IO provides design engineers with the means to rapidly create and prototype new industrial control systems before they are sourced and constructed.

Click to read more

featured chalk talk

Yield Explorer and SiliconDash

Sponsored by Synopsys

Once a design goes to tape-out, the real challenges begin. Teams find themselves drowning in data from design-process-test during production ramp-up, and have to cope with data from numerous sources in different formats in the manufacturing test supply chain. In this episode of Chalk Talk, Amelia Dalton chats with Mark Laird of Synopsys in part three of our series on the Silicon LifeCycle Management (SLM) platform, discussing how Yield Explorer and SiliconDash give valuable insight to engineering and manufacturing teams.

Click here for more on the Synopsys Silicon Lifecycle Management Platform