editor's blog
Subscribe Now

Beefed-Up Sensor Subsystem

You may recall that, about a year ago, Synopsys released a sensor subsystem. You could think of it as the IP needed to implement sensors in an SoC.

So this year they announce a “Sensor and Control IP Subsystem.” And the obvious question is, “How does this relate to last year’s announcement?”

Well, at the top level, you can think of it as an upgrade. When available in January, it will essentially replace last year’s edition.

So what’s different about it? They listed the following as some of the enhancements:

  • They’ve beefed up the DSP options, including their (ARC) EM5D and EM7D cores. Last year’s subsystem could handle basic sensor processing, whereas the new one can do voice and audio and facial recognition, all of which take substantially more horsepower. They’ve also added support for the EM6 for customers that want caching for higher performance.
  • They’ve added IEEE 754 floating-point math support. In case you’ve got floating point code (for instance, generated by MatLab).
  • More peripherals. In addition to the I2C, SPI, and ADC interfaces that they had last year for connecting to sensors, they’ve addressed the actuator side of things by including PWM, UART, and DAC support. They also support a tightly-coupled AMBA Peripheral Bus (APB) interface.
  • A big part of this whole actuator focus is motor control. So they’ve added a library of software functions for motor control. This includes “’Clarke & Park’ transforms (and inverse versions), vector modulation, PMSM decoupling and DC bus ripple elimination routines.” I honestly have no idea what those are; in this moment, I’m simply your humble (humiliated?) reporter.

sensor_and_control_subsystem_block_diagram.jpg

Image courtesy Synopsys

You can find out more in their announcement.

 

Leave a Reply

featured blogs
Feb 24, 2021
mmWave applications are all the rage. Why? Simply put, the 5G tidal wave is coming. Also, ADAS systems use 24 GHz for SRR applications and 77 GHz for LRR applications. Obviously, the world needs mmWave tech! Traditional mmWave technology spans the frequency range of 30 –...
Feb 24, 2021
Crowbits are programmable, LEGO-compatible, magnetically-coupled electronic blocks to interest kids in electronics and computing and facilitate their STEM activities....
Feb 24, 2021
With DVCon 2021 on the horizon we share a primer on our datapath verification technology HECTOR, exploring its impact on machine learning & AI chip design. The post Why Datapath Validation Is Important'€”and How HECTOR Technology Can Help appeared first on From Silico...
Feb 24, 2021
When I worked for Cadence back in the early oughts, we developed a layout database called OpenAccess, usually abbreviated to OA. It had actually been designed from the ground up to be the native... [[ Click on the title to access the full blog on the Cadence Community site. ...

featured video

Designing your own Processor with ASIP Designer

Sponsored by Synopsys

Designing your own processor is time-consuming and resource intensive, and it used to be limited to a few experts. But Synopsys’ ASIP Designer tool allows you to design your own specialized processor within your deadline and budget. Watch this video to learn more.

Click here for more information

featured paper

Using the DS28E18, The Basics

Sponsored by Maxim Integrated

This application note goes over the basics of using the DS28E18 1-Wire® to I2C/SPI Bridge with Command Sequencer and discusses the steps to get it up and running quickly. It then shows how to use the device with two different devices. The first device is an I2C humidity/temperature sensor and the second one is an SPI temperature sensor device. It concludes with detailed logs of each command.

Click here to download the whitepaper

featured chalk talk

Accelerating Physical Verification Productivity

Sponsored by Synopsys

Physical verification of IC designs at today’s advanced process nodes requires an immense amount of processing power. But, getting your design and verification tools to take full advantage of the compute resources available can be a challenge. In this episode of Chalk Talk, Amelia Dalton chats with Manoz Palaparthi of Synopsys about dramatically improving the performance of your physical verification process. 

Click here for more information about Physical Verification using IC Validator