editor's blog
Subscribe Now

The Power of the Pen

This year’s recent Touch Gesture Motion (TGM) conference had a surprising focus on pens. Which I like, actually. While most of my professional time is with a keyboard, I still take notes manually on paper. Partly it’s because, in an interview situation, I feel like it’s rude and impersonal to be typing away as if I’m some bureaucrat entering data into a form.

But, even though I’m a fast typist (on a real keyboard, not a virtual one), I can write even faster (depending on how long a legibility relaxation time I want). So it seems more efficient to write. But I write in a book, and I then need to keep track of which pages have notes for which topics when I come back to turning them into some kind of piece. I’d love to be able to write on a digitizing surface and then simply save note files.

N-Trig outlined other reasons why handwriting is useful:

  • Annotating other work
  • Expressing things other than text: art, graphs (in lab notebooks, e.g.)
  • Math formulas, for instance… can you imagine trying to futz with, say, the Microsoft Word equation capabilities – which are nice when you want clean typeset formulas – when frantically taking notes from a quantum mechanics lecture? It would never work. You need to be able to scribble them.

That, unfortunately, isn’t practical today, and some of the challenges that remain were highlighted by N-Trig at the TGM conference.

This is a topic you might expect to see at such a conference. What I wasn’t expecting was information on studies that link handwriting to brain function. It appears that the process of writing activates various parts of the brain that help solidify information. Studies suggest, among other things, that:

  • “Students without consistent exposure to handwriting are more likely to have trouble retrieving letters from memory; spelling accurately; extracting meaning from text or lectures; and interpreting the context of words and phrases.”
  • “Elementary-age students who wrote compositions by hand rather than by keyboarding, one researcher found, wrote faster, wrote longer pieces, and expressed more ideas.”

Source: N-Trig presentation. He listed numerous sources, although it was tough to ascribe specific sources to specific points.

Now… this is from a company that sells digital pens, so the information serves them well, but it didn’t feel like simply self-serving research.

What he also confirmed is that pens still have some work to do to provide the kind of writing experience that we’re used to with real pens and pencils on paper. And that appears to be the gold standard. It’s honestly not clear to me if that’s an arbitrary standard that comes from what we’ve gotten used to or if there’s something more fundamental.

But there are a number of dimensions that have to be optimized for it all to work, including:

  • You’ve got to be able to hold a pen at various angles and have it work properly.
  • You want just the right amount of friction – and what’s “right” depends on what kind of pen you think you’re working with – felt tip, ballpoint, rollerball, etc.
  • The digitizer response has to be fast – latency screws up eye-hand coordination.
  • The digitizer has to be precise so as to capture all of the correct data points.
  • The pen tip has to be long-wearing under continual usage.
  • The palm has to be rejected accurately.  Trying to write while keeping the palm up simply doesn’t work – it’s not how we’ve learned to write, and the large-motor “noise” swamps the fine motor fingers and you end up with writing that looks way worse than mine (which is hard to imagine, believe me).

They’re studying pen performance by measuring speed and accuracy – and even comparing pen-and-paper to electronic pens. One way of doing that was to use copy paper under an electronic pen/pad and then compare the digital result against the actual imprinted writing on the copy paper. An example is shown below, and you can see where the two align and where they miss.

Pen_figure.png

Image courtesy N-Trig

As the picture suggests, while there’s a fair bit of green, indicating agreement between the digital and copy versions, there’s still a lot of blue and gray. The latter are near each other, so it’s mostly not a total miss, but ideally you want all green. And they’re not quite there yet.

And that’s just to get the pixels all in the right place. Once that’s in place, then handwriting recognition would be a nice bonus. Then again, if I can’t always recognize my own writing, I can’t reasonably expect a computer to.

So, in summary, the bad news: there’s still work to be done. The good news: it would appear that N-Trig and others are taking this seriously. We may yet get usable electronic pens that rival the real thing. Which would make my life easier, but, more importantly, would allow us to proceed with going digital in school and out without giving up handwriting.

Leave a Reply

featured blogs
Sep 29, 2023
Our ultra-low-power SiWx917 Wi-Fi SoC with an integrated AI/ML accelerator simplifies Edge AI for IoT device makers. Accelerate your AIoT development....
Sep 29, 2023
Cadence has become a contributor-level member of the Automotive Working Group in the Universal Chiplet Interconnect Express (UCIe) Consortium. Last year, the Consortium ratified the UCIe specification, which was established to standardize a die-to-die interconnect for chiplet...
Sep 28, 2023
See how we set (and meet) our GHG emission reduction goals with the help of the Science Based Targets initiative (SBTi) as we expand our sustainable energy use.The post Synopsys Smart Future: Our Climate Actions to Reduce Greenhouse Gas Emissions appeared first on Chip Des...
Sep 27, 2023
On-device generative AI brings many exciting advantages, including cost, privacy, performance and personalization '“ offering significant enhancements in utility, productivity and entertainment with use cases across industries, from the commonplace to the creative....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
11,942 views