editor's blog
Subscribe Now

New Nanoimprint from EVG

With all the delicacy involved in the advanced lithography techniques we use for patterning exquisitely small features onto wafers, occasionally we come back to a brute-force approach: nanoimprint lithography (NIL). Instead of painstakingly exposing patterns onto a photoresist, we simply press a patterned die (PS this is the kind of die whose plural is “dies,” not the singulated silicon bits whose plural is “dice”) into a bed of moosh to create a pattern as if making an old-school vinyl record. Harden the material, and we’re good.

While already used for hard drives, we’ve also seen it combined with DSA for even more aggressive hard drives. But that’s all still research stuff.

EVG_NIL_photo.jpgEVG recently announced a high-volume production SmartNIL process. It’s a UV-cured approach, although any of you wondering why they get to use UV while EUV is stuck at the starting gate have no reason to be jealous. Unlike EUV, you don’t need a carefully collimated beam of UV. You can just bathe your wafer in incoherent swaths of UV light.

The obvious question then might be, why can’t I use this? And the answer is, maybe you can! From a target-technology standpoint, your odds are good. (From a number-of-designers standpoint, not so much). It’s easier to answer the question, “What can’t this be used for?” than, “What can it be used for?”

The answer to the easier question is, “Transistors.” There are two issues with NIL for advanced transistors: feature size and defectivity.

  • Yes, according to EVG’s Gerald Kreindl, advanced research work in John Rogers’ group at Illinois has actually replicated a carbon nanotube (CNT) using imprint. (Which is interesting since a CNT is a 3D feature…) The point being, there’s not a fundamental limit to feature size. (OK, there is, but I don’t think anyone is going to try to replicate a quark using NIL) Realistically speaking, SmartNIL is for features in the 20-100-nm (or bigger) range (more like 40 and up in high volume). That would leave out fins, for example.
  • The other issue is defectivity: a slight glitch in a microfluidics channel isn’t going to cause any pain. That same glitch in a transistor may send valuable electrons in the wrong direction.

So if transistors are out, what does that leave? Lots: Optics, photonics,  LEDs, bioelectronics…

You can find out more in their announcement.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Thermal Management Solutions

Sponsored by Mouser Electronics and Panasonic

With shrinking form factors, tighter power budgets, and higher performance, thermal management can be a challenge in today’s designs. It might be time to bust out the thermal grease to help conduct away some of that excess heat. But, before you grab that tube, check out this episode of Chalk Talk where Amelia Dalton chats with Len Metzger of Panasonic about the details, drawbacks, and design considerations when using thermal grease - and its alternatives.

Click here for more information about Panasonic Thermal Management Solutions