editor's blog
Subscribe Now

New Nanoimprint from EVG

With all the delicacy involved in the advanced lithography techniques we use for patterning exquisitely small features onto wafers, occasionally we come back to a brute-force approach: nanoimprint lithography (NIL). Instead of painstakingly exposing patterns onto a photoresist, we simply press a patterned die (PS this is the kind of die whose plural is “dies,” not the singulated silicon bits whose plural is “dice”) into a bed of moosh to create a pattern as if making an old-school vinyl record. Harden the material, and we’re good.

While already used for hard drives, we’ve also seen it combined with DSA for even more aggressive hard drives. But that’s all still research stuff.

EVG_NIL_photo.jpgEVG recently announced a high-volume production SmartNIL process. It’s a UV-cured approach, although any of you wondering why they get to use UV while EUV is stuck at the starting gate have no reason to be jealous. Unlike EUV, you don’t need a carefully collimated beam of UV. You can just bathe your wafer in incoherent swaths of UV light.

The obvious question then might be, why can’t I use this? And the answer is, maybe you can! From a target-technology standpoint, your odds are good. (From a number-of-designers standpoint, not so much). It’s easier to answer the question, “What can’t this be used for?” than, “What can it be used for?”

The answer to the easier question is, “Transistors.” There are two issues with NIL for advanced transistors: feature size and defectivity.

  • Yes, according to EVG’s Gerald Kreindl, advanced research work in John Rogers’ group at Illinois has actually replicated a carbon nanotube (CNT) using imprint. (Which is interesting since a CNT is a 3D feature…) The point being, there’s not a fundamental limit to feature size. (OK, there is, but I don’t think anyone is going to try to replicate a quark using NIL) Realistically speaking, SmartNIL is for features in the 20-100-nm (or bigger) range (more like 40 and up in high volume). That would leave out fins, for example.
  • The other issue is defectivity: a slight glitch in a microfluidics channel isn’t going to cause any pain. That same glitch in a transistor may send valuable electrons in the wrong direction.

So if transistors are out, what does that leave? Lots: Optics, photonics,  LEDs, bioelectronics…

You can find out more in their announcement.

Leave a Reply

featured blogs
Apr 18, 2021
https://youtu.be/afv9_fRCrq8 Made at Target Oakridge (camera Ziyue Zhang) Monday: "Targeting" the Open Compute Project Tuesday: NUMECA, Computational Fluid Dynamics...and the America's... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 16, 2021
Spring is in the air and summer is just around the corner. It is time to get out the Old Farmers Almanac and check on the planting schedule as you plan out your garden.  If you are unfamiliar with a Farmers Almanac, it is a publication containing weather forecasts, plantin...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

Featured Chalk Talk

Magnetics for High Voltage

Sponsored by Mouser Electronics and Bourns

With today’s trend toward ever-increasing voltages in energy systems, choosing the right transformer for the job has become an engineering challenge. High voltages demand careful attention to insulation, clearance, and creepage. In this episode of Chalk Talk, Amelia Dalton chats with Cathal Sheehan of Bourns about choosing magnetics for high-voltage applications.

More information about Bourns Magnetics for High Voltage Applications