editor's blog
Subscribe Now

Multicore Task-Management Standard Implemented

In spring of last year, we described a new standard from the Multicore Association for use in managing tasks on multicore embedded systems. Called MTAPI, it abstracts away details of exactly where a particular task might run at any given time, allowing for fixed or real-time binding to a core or hardware accelerator.MTAPI_image.jpg

Well, standards are all well and good, but then someone has to write code that actually implements the standard. Last month, Siemens announced an open-source BSD-licensed implementation that supports homogeneous multicore systems.

The MTAPI implementation was part of a larger multicore support package that they released, called Embedded Multicore Building Blocks (EMB2). It also includes implementation of some popular algorithm patterns as well as various structures and frameworks focused on streaming applications (an extremely common application type that is prone to challenging performance – meaning that effective multicore utilization makes all the difference).

They’ve segregated the code such that only a bottom base layer has any interaction with an underlying OS. This makes most of the code independent of the operating system (OS). They support Linux and Windows, but changes to the base layer will allow ready porting to other OSes.

Next year, they plan to support heterogeneous systems – a tougher deal because each node may have a different processing architecture, and memory may be scattered all over the system. In so doing, they’re likely to bring the venerable MCAPI standard into play. That, the first of the Multicore Association standards, handles communication between disparate cores running different OS instances.

You can find more info in their announcement.

Leave a Reply

featured blogs
Jan 20, 2020
As you probably know, discrete wire component data is quite a bit different than just standard socket and terminal mating relationships. When we look at how Samtec approaches discrete wire products, there are several components involved. We not only sell the assemblies, but w...
Jan 20, 2020
My latest video blog is now available. This time I am looking at operating systems for embedded applications and how you go about selecting one. You can see the video here or here: Future video blogs will continue to look at topics of interest to embedded software developers....
Jan 17, 2020
I once met Steve Wozniak, or he once met me (it's hard to remember the nitty-gritty details)....
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector