editor's blog
Subscribe Now

A Dev Board with Both Touch and Gestures

How do people want to interact with their machines? Some of us are most productive with mouse and keyboard (although I keep seeing presentations complaining that we’ve had them for too long – as if we need to get rid of them even if they’re the best tool for some jobs).

Touch has obviously taken over a large number of systems, and for many things, it’s simpler and more obvious (never mind that trying to make it be everything for everyone doesn’t work…). Most importantly, it’s the latest rage, so… well, if it’s cool and popular, then it must be good, right?

Well, look out, touch: the next thing for our ADD world is gesture technology. It’s like touch without the touch. In fact, you can have a “gesture” that’s your pointing finger doing spooky-touch-and-click-at-a-distance, but there’s also the whole gesture vocabulary thing, where different gestures mean different specific things (we’ll dig more into that in the future). And, to hear many folks say it, this is the NEXT next big thing.

Given this history of one mode replacing another mode and then being replaced itself, it’s easy to think of these things as competing. Why would you actually touch a system if you could gesture? Why would you waste money and space on a keyboard if you could touch a virtual keyboard? Well, because different jobs work best with different modalities. They don’t necessarily have to compete.

So it was interesting to see Microchip release a new dev board featuring a touchpad. It’s not a touch dev board; it’s not a gesture dev board: it has both touch and gesture recognition technology built into the touchpad. So you can develop systems that use both approaches – giving developers the opportunity to provide their customers with the best tool for the job.

15472109182_99238954c3.jpg

They call the input device a “3D Touchpad.” In most cases, adding a third dimension to a touchpad means tracking how hard a finger presses. But that’s not what it means here: in this context, it’s the air gestures above the touchpad that account for the third dimension.

The gesture element leverages Microchip’s GestIC technology, which measures the e-field anomalies that your hand creates to decode gestures. Wires embedded in the touchpad, along with their GestIC controller chip, add this capability to the otherwise 2D touchpad. Note that they also support “surface gestures” – gestures swiped on the touchpad.

This isn’t a system per se; it appears to be targeted at developing human-machine interface (HMI) approaches and drivers that would then be integrated into different systems that use the 3D touchpad. The dev kit comes with a free downloadable GUI and an SDK/API package.

You can find more detail in their announcement.

Leave a Reply

featured blogs
Jun 6, 2023
Learn about our PVT Monitor IP, a key component of our SLM chip monitoring solutions, which successfully taped out on TSMC's N5 and N3E processes. The post Synopsys Tapes Out SLM PVT Monitor IP on TSMC N5 and N3E Processes appeared first on New Horizons for Chip Design....
Jun 6, 2023
At this year's DesignCon, Meta held a session on '˜PowerTree-Based PDN Analysis, Correlation, and Signoff for MR/AR Systems.' Presented by Kundan Chand and Grace Yu from Meta, they talked about power integrity (PI) analysis using Sigrity Aurora and Power Integrity tools such...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....

featured video

Synopsys Solution for Comprehensive Low Power Verification

Sponsored by Synopsys

The growing complexity of power management in chips requires a holistic approach to UPF power-intent generation and low power verification. Learn how Synopsys addresses these requirements with a comprehensive solution for low-power verification.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Automated Benchmark Tuning
Sponsored by Synopsys
Benchmarking is a great way to measure the performance of computing resources, but benchmark tuning can be a very complicated problem to solve. In this episode of Chalk Talk, Nozar Nozarian from Synopsys and Amelia Dalton investigate Synopsys’ Optimizer Studio that combines an evolution search algorithm with a powerful user interface that can help you quickly setup and run benchmarking experiments with much less effort and time than ever before.
Jan 26, 2023
17,478 views