editor's blog
Subscribe Now

A Dev Board with Both Touch and Gestures

How do people want to interact with their machines? Some of us are most productive with mouse and keyboard (although I keep seeing presentations complaining that we’ve had them for too long – as if we need to get rid of them even if they’re the best tool for some jobs).

Touch has obviously taken over a large number of systems, and for many things, it’s simpler and more obvious (never mind that trying to make it be everything for everyone doesn’t work…). Most importantly, it’s the latest rage, so… well, if it’s cool and popular, then it must be good, right?

Well, look out, touch: the next thing for our ADD world is gesture technology. It’s like touch without the touch. In fact, you can have a “gesture” that’s your pointing finger doing spooky-touch-and-click-at-a-distance, but there’s also the whole gesture vocabulary thing, where different gestures mean different specific things (we’ll dig more into that in the future). And, to hear many folks say it, this is the NEXT next big thing.

Given this history of one mode replacing another mode and then being replaced itself, it’s easy to think of these things as competing. Why would you actually touch a system if you could gesture? Why would you waste money and space on a keyboard if you could touch a virtual keyboard? Well, because different jobs work best with different modalities. They don’t necessarily have to compete.

So it was interesting to see Microchip release a new dev board featuring a touchpad. It’s not a touch dev board; it’s not a gesture dev board: it has both touch and gesture recognition technology built into the touchpad. So you can develop systems that use both approaches – giving developers the opportunity to provide their customers with the best tool for the job.

15472109182_99238954c3.jpg

They call the input device a “3D Touchpad.” In most cases, adding a third dimension to a touchpad means tracking how hard a finger presses. But that’s not what it means here: in this context, it’s the air gestures above the touchpad that account for the third dimension.

The gesture element leverages Microchip’s GestIC technology, which measures the e-field anomalies that your hand creates to decode gestures. Wires embedded in the touchpad, along with their GestIC controller chip, add this capability to the otherwise 2D touchpad. Note that they also support “surface gestures” – gestures swiped on the touchpad.

This isn’t a system per se; it appears to be targeted at developing human-machine interface (HMI) approaches and drivers that would then be integrated into different systems that use the 3D touchpad. The dev kit comes with a free downloadable GUI and an SDK/API package.

You can find more detail in their announcement.

Leave a Reply

featured blogs
Sep 23, 2022
When I rejoined Cadence in 2015, we had not yet announced Palladium Z1. But it was basically done, and we announced it a couple of months later. I wrote about the announcement in my post Palladium Z1, an Enterprise Server Farm in a Rack . Next, we created Protium X1 which I c...
Sep 22, 2022
On Monday 26 September 2022, Earth and Jupiter will be only 365 million miles apart, which is around half of their worst-case separation....
Sep 22, 2022
Learn how to design safe and stylish interior and exterior automotive lighting systems with a look at important lighting categories and lighting design tools. The post How to Design Safe, Appealing, Functional Automotive Lighting Systems appeared first on From Silicon To Sof...

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Introducing Vivado ML Editions

Sponsored by Xilinx

There are many ways that machine learning can help improve our IC designs, but when it comes to quality of results and design iteration - it’s a game changer. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ni from Xilinx about the benefits of machine learning design optimization, what hierarchical module-based compilation brings to the table, and why extending a module design into an end-to-end flow can make all the difference in your next IC design.

Click here for more information about Vivado ML