editor's blog
Subscribe Now

What Does ConnectOne’s “G2” Mean?

ConnectOne makes WiFi modules. And they recently announced a “G2” version. Being new to the details of these modules, I got a bit confused by the number of products bearing the “G2” label as well as the modes available – were they all available in one module, or were different modules for different modes? A conversation with GM and Sales VP Erez Lev helped put things in order.

As it turns out, you might say that ConnectOne sells one WiFi module into multiple form factors. Of the different modules I saw, it was the form factor – pins vs. board-to-board vs. SMT; internal vs. external antenna – that was different, not the functionality.

There are multiple modes that these modules can take on – and these are set up using software commands that can be executed in real time. So this isn’t just a design-time configuration; it can be done after deployment in the field.

The modes available are:

–          Embedded router

–          Embedded access point

–          LAN to WiFi bridge

–          Serial to LAN/WiFi bridge

–          Full internet controller

–          PPP emulator

But what about this “G2” thing? Their first-generation modules were based on Marvell’s 8686 chip. And that chip has been end-of-lifed. Or, perhaps better said, it’s been 86ed. So in deciding where to go next, they settled on a Broadcom baseband chip – something they said gave Broadcom a boost in an area they’re trying to penetrate.

G2N2_Top_and_bottom_400.png

But the challenge was in making this change transparent to users. Existing software invokes the new chip just like it did the old one, and this took a fair bit of work. They say they were successful, however, so that upgrading from the older to the newer version takes no effort; it just plugs in.

So “G2” reflects this move to the Broadcom chip as their 2nd-generation module family. From a feature standpoint, the big thing it gets them is 802.11n support. But they also have a number of unexposed features in their controller. Next year they’ll be announcing a “G3” version, with higher performance and… well, he didn’t share all of what’s coming. But G3 will have all of the same pinouts, form factors, APIs, etc. for a seamless upgrade from G2 (or G1, for that matter).

You can get more detail in their announcement.

 

Image courtesy ConnectOne

Leave a Reply

featured blogs
Jan 25, 2021
A mechanical look at connector skew in your systems.  Electrical and Mechanical requirements collide when looking at interconnects in your electrical system. What can you do about it, how do you plan for it, and how do you pick the most rugged solution that still carries...
Jan 25, 2021
There is a whole portfolio of official "best of CES" awards, 14 of them this year. Of course, every publication lists its own best-of list, but the official CES awards are judged by... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

SLX FPGA: Accelerate the Journey from C/C++ to FPGA

Sponsored by Silexica

High-level synthesis (HLS) brings incredible power to FPGA design. But harnessing the full power of HLS with FPGAs can be difficult even for the most experienced engineering teams. In this episode of Chalk Talk, Amelia Dalton chats with Jordon Inkeles of Silexica about using the SLX FPGA tool to truly harness the power of HLS with FPGAs, getting better results faster - regardless of whether you are approaching from the hardware or software domain.

More information about SLX FPGA