editor's blog
Subscribe Now

QuickLogic’s Next Sensor Hub Rev

We’ve spent a bit of energy in the past looking at QuickLogic’s approach to a low-power sensor hub. Well, they’ve just introduced a second round, and the obvious question is… what’s changed?

They list some of the current capabilities, but the obvious questions are, how does this compare to the first one, and how did they make this happen?

Fundamentally, this hub has more horsepower than their first one. So they can do more work. They had a basic pedometer in their first hub; with this one, they have an “enhanced” pedometer that can now discriminate between walking, jogging, and running, while counting individual steps.

As it turns out, however, most of the capabilities on their second go-round weren’t possible on the first one. They noted features like IrDA remotes, barcode transmission, and pulse-width modulation (PWM) for dimming displays – none of these could be done by the first hub.

So how did they do this? Two things. First, they looked through some of the critical functions to see which things weren’t likely to change anytime soon (or ever); they hardened those into dedicated gates. That sped things up and lowered power.

But they also made some process changes. They didn’t go into the details of what changed, but the goal was yet lower power. After all, adding more capability usually has a power cost, which they have to fight since power is such an important part of their message. As it is, they’re claiming as low as 150 µW – even as they’ve added programmable logic and processor capacity, algorithm memory, and data buffer memory.

S2-Sensor-Hub-Block-Diagram_300.jpg

Image courtesy QuickLogic

You can find out more in their announcement.

Leave a Reply

featured blogs
Nov 30, 2023
No one wants to waste unnecessary time in the model creation phase when using a modeling software. Rather than expect users to spend time trawling for published data and tediously model equipment items one by one from scratch, modeling software tends to include pre-configured...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

TDK CLT32 power inductors for ADAS and AD power management

Sponsored by TDK

Review the top 3 FAQs (Frequently Asked Questions) regarding TDK’s CLT32 power inductors. Learn why these tiny power inductors address the most demanding reliability challenges of ADAS and AD power management.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

ADI's ISOverse
In order to move forward with innovations on the intelligent edge, we need to take a close look at isolation and how it can help foster the adoption of high voltage charging solutions and reliable and robust high speed communication. In this episode of Chalk Talk, Amelia Dalton is joined by Allison Lemus, Maurizio Granato, and Karthi Gopalan from Analog Devices and they examine benefits that isolation brings to intelligent edge applications including smart building control, the enablement of Industry 4.0, and more. They also examine how Analog Devices iCoupler® digital isolation technology can encourage innovation big and small!  
Mar 14, 2023
30,961 views