editor's blog
Subscribe Now

Mentor Does Heterogeneous Multicore I

While multicore took a while to take root in the embedded world, it’s now relatively commonplace. But the most accessible style of multicore is homogeneous: all cores the same. Combine that with a shared memory configuration, and this becomes easy because you can use a symmetric multiprocessing (SMP) solution out of the box from your favorite OS. It treats the multiple processors as a group as if they were a single processor. It can do so because the processors are all the same and they all have the same view of memory.

But that’s not how all systems work. Increasingly, folks are wrestling with heterogeneous systems, which have different processors, each of which might have its own OS instance running (or perhaps even no OS at all, so-called “bare metal”). While there might be some shared memory, it would typically be for message passing between processors. For the most part, each processor would have its own memory (or portion of memory) privately allocated.

(Just to clear up some potentially confusing terminology here, homo-/heterogeneous refers to the hardware architecture; SMP and its counterpart asynchronous multiprocessing (AMP) refer more to the software architecture, including the OS. SMP has a single OS instance managing the entire bunch of processors, and, as such, requires a homogeneous configuration. But a homogeneous configuration can be run as AMP if some of the processors have their own independent OS instances running. AMP systems can also include SMP components. At least, that’s how I see it…)

AMP/heterogeneous systems are harder to manage because each processor is aware only of itself. For the most part, no OS instance has system-wide scope (unlike SMP). So things that are easy with SMP become hard with AMP.

An easy example is bring-up: who’s in charge to make sure that all processors are synchronized in their operation? Typically, each processor comes up and holds at a so-called “barrier,” but which processor looks around, deems the system stable and ready for launch, and releases the barrier?

Much of that is system design work to assign that “master” processor, but then you need a programmatic way of implementing the decision. And the catch is that, because each processor is out of scope for any other processor, there’s no obvious logical way for one processor to control the others. There’s no “super-process” that has everything in scope.

This is what Mentor Graphics is trying to address with their recent multicore announcement. Now, to be clear, Mentor makes a lot of tools for a lot of things, including both silicon implementation and embedded systems. This announcement was not about how to create a multicore SoC; it was about how to implement software on an existing heterogeneous architecture.

There were three fundamental components to their announcement, addressing several different AMP challenges:

  • remoteProc: this is a set of functions that allows one processor to control another. In particular, it allows for a well-coordinated system-wide boot sequence, with one processor controlling the life cycles of others.
  • rpmsg: this allows intercommunication between processors (so-called inter-process(or) communication, or IPC). The figure below shows this interacting through the hypervisor, although no hypervisor is required. They’ve also optimized an MCAPI implementation, which can be layered over this.
  • Improvements to their CodeSourcery tools to allow visualization of the different processes/processors in a clear and synchronized fashion (a challenge if you just run something like gdb on each core and then try to make sense out of the independent results).

AMP_arch_550.png

 

Image courtesy Mentor Graphics

They did a cleanroom implementation of these functions to ensure that they could be used with proprietary software without exposing that proprietary software to GPL license restrictions (which would otherwise require making source code for that proprietary stuff public).

They have it integrated into their tools for ARM processors and available as libraries for bare-metal setups. They don’t have an integrated version for non-ARM processors; the libraries could be used, although they haven’t been validated on anything but ARM. It’s not that they think it won’t work on non-ARM; they just seem to feel that ARM is all that matters, so it’s where they’ve spent their energy. (I’m assuming that if something else blew up huge, they’d invest more energy there…)

You can find out more in their announcement.

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Intel's Chiplet Leadership Delivers Industry-Leading Capabilities at an Accelerated Pace

Sponsored by Intel

We're proud of our long history of rapid innovation in #FPGA development. With the help of Intel's Embedded Multi-Die Interconnect Bridge (EMIB), we’ve been able to advance our FPGAs at breakneck speed. In this blog, Intel’s Deepali Trehan charts the incredible history of our chiplet technology advancement from 2011 to today, and the many advantages of Intel's programmable logic devices, including the flexibility to combine a variety of IP from different process nodes and foundries, quicker time-to-market for new technologies and the ability to build higher-capacity semiconductors

To learn more about chiplet architecture in Intel FPGA devices visit: https://intel.ly/47JKL5h

featured chalk talk

Electrical Connectors for Hermetically Sealed Applications
Many hermetic chambers today require electrical pathways to provide internal equipment with power, data or signals, or to receive data and signals from equipment within the chamber. In this episode of Chalk Talk, Amelia Dalton and Brad Taras from Cinch Connectivity Solutions explore the role that seals and connectors play in the performance of hermetic chambers. They examine the methodologies to determine hermetic seal leaks, the benefits of epoxy hermetic seals, and how Cinch Connectivity’s epoxy-based seals and hermetic connectors can add value to your next design.
Aug 22, 2023
3,868 views