editor's blog
Subscribe Now

Faster Extraction from Cadence

Cadence recently announced new extraction tools, claiming both greater speed (5x) and best-in-class accuracy for full-chip extraction. And what is it that lets them speed up without sacrificing results?

The answer is the same thing that has benefited so many EDA tools over the last few years: parallelism. Both within a box (multi-threading) and using multiple boxes (distributed computing). The tools can scale up to hundreds of CPUs, although they’re remaining mum on the details of how they did this…

They have two new tools:  a new random-walk field solver (Quantus FS) and the full-chip extraction tool (Quantus QRC). They say that the field solver is actually running around 20 times faster than their old one.

The field solver is much more detailed and accurate than the full-chip extraction tool. It’s intended for small circuits and high precision; its results are abstracted for use on a larger scale by the full-chip tool. That said, they claim good correlation between QRC and FS, so not much is lost in the abstraction.

They’ve also simplified the FinFET model, cutting the size of the circuit in half and increasing analysis speed by 2.5x.

While QRC is intended for the entire chip, it can also be used incrementally – in which case it can be three times again as fast. Both the Encounter digital implementation tool and their Tempus timing analysis tool can take advantage of this incremental capability to do real-time extraction as the tools make decisions. It’s also integrated into the Virtuoso analog/custom tool.

As to accuracy, they say they meet all of TSMC’s golden FinFET data, that they achieve consistent results with single- and multi-corner analysis, and that they’ve been certified by TSMC for the 16-nm node.

Their fundamental capabilities are summarized in the following figure, although this coverage is consistent with the prior tools.

QRC_functions_500.png

Image courtesy Cadence

You can read more in their announcement.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

PIC32CX-BZ2 and WBZ451 Multi-Protocol Wireless MCU Family
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Shishir Malav from Microchip explore the benefits of the PIC32CX-BZ2 and WBZ45 Multi-protocol Wireless MCU Family and how it can make IoT design easier than ever before. They investigate the components included in this multi-protocol wireless MCU family, the details of the software architecture included in this solution, and how you can utilize these MCUs in your next design.
May 4, 2023
40,187 views