editor's blog
Subscribe Now

Faster Extraction from Cadence

Cadence recently announced new extraction tools, claiming both greater speed (5x) and best-in-class accuracy for full-chip extraction. And what is it that lets them speed up without sacrificing results?

The answer is the same thing that has benefited so many EDA tools over the last few years: parallelism. Both within a box (multi-threading) and using multiple boxes (distributed computing). The tools can scale up to hundreds of CPUs, although they’re remaining mum on the details of how they did this…

They have two new tools:  a new random-walk field solver (Quantus FS) and the full-chip extraction tool (Quantus QRC). They say that the field solver is actually running around 20 times faster than their old one.

The field solver is much more detailed and accurate than the full-chip extraction tool. It’s intended for small circuits and high precision; its results are abstracted for use on a larger scale by the full-chip tool. That said, they claim good correlation between QRC and FS, so not much is lost in the abstraction.

They’ve also simplified the FinFET model, cutting the size of the circuit in half and increasing analysis speed by 2.5x.

While QRC is intended for the entire chip, it can also be used incrementally – in which case it can be three times again as fast. Both the Encounter digital implementation tool and their Tempus timing analysis tool can take advantage of this incremental capability to do real-time extraction as the tools make decisions. It’s also integrated into the Virtuoso analog/custom tool.

As to accuracy, they say they meet all of TSMC’s golden FinFET data, that they achieve consistent results with single- and multi-corner analysis, and that they’ve been certified by TSMC for the 16-nm node.

Their fundamental capabilities are summarized in the following figure, although this coverage is consistent with the prior tools.

QRC_functions_500.png

Image courtesy Cadence

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 22, 2021
'μWaveRiders' 是ä¸ç³»åˆ—æ—¨å¨æŽ¢è®¨ Cadence AWR RF 产品的博客,按æˆæ›´æ–°ï¼Œå…¶å†…容涵盖 Cadence AWR Design Environment æ新的核心功能,专题视频ï¼...
Sep 22, 2021
3753 Cruithne is a Q-type, Aten asteroid in orbit around the Sun in 1:1 orbital resonance with the Earth, thereby making it a co-orbital object....
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Digital Design Technology Symposium

Sponsored by Synopsys

Are you an SoC designer or manager facing new design challenges driven by rapidly growing and emerging vertical segments for HPC, 5G, mobile, automotive and AI applications?

Join us at the Digital Design Technology Symposium.

featured paper

Authenticate Automotive Endpoints for Genuine Parts

Sponsored by Maxim Integrated (now part of Analog Devices)

Learn how to implement the DS28E40 Deep Cover 1-Wire Authenticator in a system to provide authentication for endpoints such as optical cameras, headlamps, EV Batteries, occupancy sensors, steering wheels, and a myriad of other automotive applications.

Click to read more

featured chalk talk

Silicon Lifecycle Management (SLM)

Sponsored by Synopsys

Wouldn’t it be great if we could keep on analyzing our IC designs once they are in the field? After all, simulation and lab measurements can never tell the whole story of how devices will behave in real-world use. In this episode of Chalk Talk, Amelia Dalton chats with Randy Fish of Synopsys about gaining better insight into IC designs through the use of embedded monitors and sensors, and how we can enable a range of new optimizations throughout the lifecycle of our designs.

Click here for more information about Silicon Lifecycle Management Platform