editor's blog
Subscribe Now

In-Situ Real-Time Process Checks

Yesterday we looked at number of different ways of inspecting wafers. Such inspections can be an important part of a process that turns out high yields of high-quality chips. They serve a couple of roles in this regard.

The most obvious is that you catch faulty material early. If rework is possible, you can then rework it; if not, well, you don’t throw good processing money after bad.

But the other reason is probably more important: by looking at wafers at various monitoring points, you get a sense of how the equipment is working. The wafer results act as a proxy for machine monitoring.

So… what if you could measure the machine directly?

That’s what CyberOptics is doing using an in-situ approach that they say is complementary to wafer inspection. They create “fake” wafers outfitted with sensors and feed them into the equipment. The equipment thinks they’re normal wafers and processes them; the sensors measure selected aspects of the setup and report back wirelessly in real time.

And they claim to be the only ones that have this real-time capability. They say other approaches require manual “timestamping” of data that’s downloaded and analyzed after the processing is over. The Bluetooth connection to a nearby rolling host computer allows the data to be transmitted as its captured.

They have setups for measuring air particles; for leveling; gap measurement (used with thin-film deposition, sputtering, etc.); vibration measurement; and a “teaching” system that improves alignment.

Most recently they’ve announced new air particulate measurement platforms: a reticle version, which replaces not the wafer but the reticle in a lithography tool, and a smaller wafer version – 150 mm (6”, roughly). That last one might seem odd, since they say they’ve already got a 450-mm version, and bigger ones usually come later. But in this case, they had to reduce the size of the sensing and electronics to fit the smaller form factor.

aps_-_combined.png

Images courtesy CyberOptics

You can read more in their announcement.

Leave a Reply

featured blogs
Sep 21, 2020
Technology is changing the strategies we use to do things - oh so fast that 2010 seems like a distant past- within many spaces -- including the way we do our current topic of interest - Timing... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 21, 2020
Semicon, the world’s largest semiconductor conference and exhibition, is September 23-25 in Taiwan. Like most shows of its size and caliber, Semicon boasts a long and illustrious list of exhibitors (500+), and countless forums, symposiums, and workshops. Of course Semic...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...
Sep 16, 2020
In addition to the Great Highland (Scottish) bagpipes, the Uilleann (Irish) bagpipes, and the Northumbrian (English) bagpipes, there are myriad other offerings spanning the globe....

Featured Video

Latency-Optimized PAM-4 Architecture for Next-Generation PCIe

Sponsored by Synopsys

This video presentation briefly describes how DesignWare® IP for PCIe® 5.0 is minimizing risk and accelerating time to market, and what Synopsys is doing to help designers prepare for next-generation PAM-4 PCIe 6.0 designs.

Click here for more information about DesignWare IP Solutions for PCI Express

Featured Paper

4 audio trends transforming the automotive industry

Sponsored by Texas Instruments

The automotive industry is focused on creating a comfortable driving experience – but without compromising fuel efficiency or manufacturing costs. The adoption of these new audio technologies in cars – while requiring major architecture changes – promise to bring a richer driving and in-car communication experience. Discover techniques using microphones, amplifiers, loudspeakers and advanced digital signal processing that help enable the newest trends in automotive audio applications.

Click here to download the whitepaper

Featured Chalk Talk

Introducing Google Coral

Sponsored by Mouser Electronics and Google

AI inference at the edge is exploding right now. Numerous designs that can’t use cloud processing for AI tasks need high-performance, low-power AI acceleration right in their embedded designs. Wouldn’t it be cool if those designs could have their own little Google TPU? In this episode of Chalk Talk, Amelia Dalton chats with James McKurkin of Google about the Google Coral edge TPU.

More information about Coral System on Module