editor's blog
Subscribe Now

A New IoT Protocol

We’ve got a number of ways of getting our devices to talk to each other. Some time back, I opined that Bluetooth Low Energy and WiFi seemed to have the edge, largely influenced by the burgeoning Internet of Things (IoT). Zigbee, meanwhile, seems to have more sway in the Smart Grid.

Well, some folks still aren’t happy with these options. There are three capabilities that are desirable, and yet none of the above standards can do all three:

  • Low power (of course)
  • Native IP6 support
  • The ability to mesh

WiFi is the only one that handles IP-based traffic, but it loses on the power front; Bluetooth can’t mesh natively (although a mesh product has been announced overlaying Bluetooth); and Zigbee doesn’t do IP natively.

Hence the Thread protocol. It’s built over 802.15.4, the low-cost, low-power physical layer and media access control layer that underlie Zigbee and some other protocols. It handles IP6 via 6LoWPAN.

image002.jpg

It appears to have originated out of Nest Labs (now Google), and they’ve assembled a group of other companies to promote the protocol. Most of the other names are familiar electronics guys – ARM, Freescale, Samsung, and Silicon Labs – but they also have a couple ThingMakers: Big Ass Fans (seriously) and Yale (think door locks).

Note that this isn’t about setting a standard: “promote” really is the right verb, since Thread is already shipping in Nest products. They’re going about this by putting together a certification program to ensure that all devices carrying the Thread designation pass muster. The certification program should be in place by the end of the year, with full availability early next year.

And what are the targets for Thread? Their site says, “… all sorts of products for the home.” They list specifically:

  • Appliances
  • Access control
  • Climate control
  • Energy management
  • Lighting
  • Safety
  • Security

Given that this is intended for non-technical consumers connecting Things in the home, they’ve also focused on ease-of-setup, via phone or computer or tablet.

You can find out more (and even participate) via their announcement.

Leave a Reply

featured blogs
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 17, 2021
Dear BoardSurfers, I want to unapologetically hijack the normal news and exciting feature information that you are accustomed to reading about in the world of PCB Design blogs to eagerly let you know... [[ Click on the title to access the full blog on the Cadence Community s...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

ARC® Processor Virtual Summit 2021

Sponsored by Synopsys

Designing an embedded SoC? Attend the ARC Processor Virtual Summit on Sept 21-22 to get in-depth information from industry leaders on the latest ARC processor IP and related hardware and software technologies that enable you to achieve differentiation in your chip or system design.

Click to read more

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated (now part of Analog Devices)

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

Featured Chalk Talk

Transforming 400V Power for SELV Systems

Sponsored by Mouser Electronics and Vicor

Converting from distribution-friendly voltages like 400V down to locally-useful voltages can be a tough engineering challenge. In SELV systems, many teams turn to BCM converter modules because of their efficiency, form factor, and ease of design-in. In this episode of Chalk Talk, Amelia Dalton chats with Ian Masza of Vicor about transforming 400V into power for SELV systems.

Click here for more information about Products by Vicor